Novel Applications of Near-Field Scanning Optical Microscopy (NSOM)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Chemical Science
We describe a systematic investigation of the factors controlling step-by-step growth of the metal-organic framework (MOF) [Cu 3(btc) 2(H 2O) 3]·xH 2O (also known as HKUST-1), using quartz crystal microbalance (QCM) electrodes as an in situ probe of the reaction kinetics and mechanism. Electrodes coated with silica, alumina and gold functionalized with OH- and COOH-terminated self-assembled monolayers (SAMs) were employed to determine the effects of surface properties on nucleation. Deposition rates were measured using the high sensitivity available from QCM-D (D = dissipation) techniques to determine rate constants in the early stage of the process. Films were characterized using grazing incidence XRD, SEM, AFM, profilometry and reflection-absorption IR spectroscopy. The effects of reaction time, concentration, temperature and substrate on the deposition rates, film crystallinity and surface morphology were evaluated. The initial growth step, in which the surface is exposed to copper ions (in the form of an ethanolic solution of copper(ii) acetate) is fast and independent of temperature, after which all subsequent steps are thermally activated over the temperature range 22-62 °C. Using these data, we propose a kinetic model for the Cu 3(btc) 2 growth on surfaces that includes rate constants for the individual steps. The magnitude of the activation energies, in particular the large entropy decrease, suggests an associative reaction with a tight transition state. The measured activation energies for the step-by-step MOF growth are an order of magnitude lower than the value previously reported for bulk Cu 3(btc) 2 crystals. Finally, the results of this investigation demonstrate that the QCM method is a powerful tool for quantitative, in situ monitoring of MOF growth in real time. © 2012 The Royal Society of Chemistry.
With the goal of studying the conversion of optical energy to electrical energy at the nanoscale, we developed and tested devices based on single-walled carbon nanotubes functionalized with azobenzene chromophores, where the chromophores serve as photoabsorbers and the nanotube as the electronic read-out. By synthesizing chromophores with specific absorption windows in the visible spectrum and anchoring them to the nanotube surface, we demonstrated the controlled detection of visible light of low intensity in narrow ranges of wavelengths. Our measurements suggested that upon photoabsorption, the chromophores isomerize to give a large change in dipole moment, changing the electrostatic environment of the nanotube. All-electron ab initio calculations were used to study the chromophore-nanotube hybrids, and show that the chromophores bind strongly to the nanotubes without disturbing the electronic structure of either species. Calculated values of the dipole moments supported the notion of dipole changes as the optical detection mechanism.
IEEE Transactons on Nanotechnology
Abstract not provided.
Abstract not provided.