Publications

Results 26–50 of 52
Skip to search filters

Feasibility of measuring density and temperature of laser produced plasmas using spectroscopic techniques

Edens, Aaron E.

A wide variety of experiments on the Z-Beamlet laser involve the creation of laser produced plasmas. Having a direct measurement of the density and temperature of these plasma would an extremely useful tool, as understanding how these quantities evolve in space and time gives insight into the causes of changes in other physical processes, such as x-ray generation and opacity. We propose to investigate the possibility of diagnosing the density and temperature of laser-produced plasma using temporally and spatially resolved spectroscopic techniques that are similar to ones that have been successfully fielded on other systems. Various researchers have measured the density and temperature of laboratory plasmas by looking at the width and intensity ratio of various characteristic lines in gases such as nitrogen and hydrogen, as well as in plasmas produced off of solid targets such as zinc. The plasma conditions produce two major measurable effects on the characteristic spectral lines of that plasma. The 1st is the Stark broadening of an individual line, which depends on the electron density of the plasma, with higher densities leading to broader lines. The second effect is a change in the ratio of various lines in the plasma corresponding to different ionization states. By looking at the ratio of these lines, we can gain some understanding of the plasma ionization state and consequently its temperature (and ion density when coupled with the broadening measurement). The hotter a plasma is, the higher greater the intensity of lines corresponding to higher ionization states. We would like to investigate fielding a system on the Z-Beamlet laser chamber to spectroscopically study laser produced plasmas from different material targets.

More Details

Z-Beamlet: a multi-KJ TW-class laser for backlit x-radiography applications on the Z-Accelerator

Atherton, B.W.; Gonzales, Rita A.; Gurrieri, Thomas G.; Herrmann, Mark H.; Mulville, Thomas D.; Neely, Kelly A.; Rambo, Patrick K.; Rovang, Dean C.; Ruggles, Larry R.; Smith, Ian C.; Schwarz, Jens S.; Simpson, Walter W.; Sinars, Daniel S.; Speas, Christopher S.; Tafoya-Porras, Belinda T.; Wenger, D.F.; Young, Ralph W.; Adams, Richard G.; Bennett, Guy R.; Campbell, David V.; Carroll, Malcolm; Claus, Liam D.; Edens, Aaron E.; Geissel, Matthias G.

Abstract not provided.

X-ray optics on the Z-Accelerator backlit with the Z-Beamlet Laser & Z-Petawatt Laser systems

Gonzales, Rita A.; Gurrieri, Thomas G.; Herrmann, Mark H.; Mulville, Thomas D.; Neely, Kelly A.; Rambo, Patrick K.; Rovang, Dean C.; Ruggles, Larry R.; Schwarz, Jens S.; Adams, Richard G.; Simpson, Walter W.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.; Tafoya-Porras, Belinda T.; Wenger, D.F.; Young, Ralph W.; Edens, Aaron E.; Atherton, B.W.; Bennett, Guy R.; Campbell, David V.; Carroll, Malcolm; Claus, Liam D.; Geissel, Matthias G.

Abstract not provided.

Development of an in situ peak intensity measurement method for ultraintense single shot laser-plasma experiments at the Sandia Z petawatt facility

Review of Scientific Instruments

Link, Anthony; Chowdhury, Enam A.; Morrison, John T.; Ovchinnikov, Vladimir M.; Offermann, Dustin; Van Woerkom, Linn; Freeman, Richard R.; Pasley, John; Shipton, Erik; Beg, Farhat; Rambo, Patrick K.; Schwarz, Jens S.; Geissel, Matthias G.; Edens, Aaron E.; Porter, John L.

Using the physical process of ultraintense field ionization of high charge states of inert gas ions, we have developed a method of peak intensity measurement at the focus of high energy short pulse lasers operating in single shot mode. The technique involves detecting ionization products created from a low pressure gas target at the laser focus via time of flight detector. The observation of high ion charge states collected by the detector yields peak intensity at the focus when compared with the results obtained from well established tunnel ionization models. An initial peak intensity measurement of 5× 1016 W cm-2 was obtained for a 1.053 μm center wavelength, 0.4 J pulse with 1 ps pulse duration focused with an f5.5 off-axis parabola. Experiments with multijoule level, 500 fs laser pulses are on the way. © 2006 American Institute of Physics.

More Details
Results 26–50 of 52
Results 26–50 of 52