The evaluation of optical system performance in fog conditions typically requires field testing. This can be challenging due to the unpredictable nature of fog generation and the temporal and spatial nonuniformity of the phenomenon itself. We describe the Sandia National Laboratories fog chamber, a new test facility that enables the repeatable generation of fog within a 55m×3m×3m (L×W×H) environment, and demonstrate the fog chamber through a series of optical tests. These tests are performed to evaluate system image quality, determine meteorological optical range (MOR), and measure the number of particles in the atmosphere. Relationships between typical optical quality metrics, MOR values, and total number of fog particles are described using the data obtained from the fog chamber and repeated over a series of three tests.
Degraded visual environments are a serious concern for modern sensing and surveillance systems. Fog is of interest due to the frequency of its formation along our coastlines disrupting border security and surveillance. Fog presents hurdles in intelligence and reconnaissance by preventing data collection with optical systems for extended periods. We will present recent results from our work in operating optical systems in our controlled fog experimental chamber. This facility is a 180-foot-long, 10-foot-wide, and 10-foot-Tall structure that has over 60 spray nozzles to achieve uniform aerosol coverage with various particle size, distributions, and densities. We will discuss the physical formation of fog in nature and how our generated fog compares. In addition, we will discuss fog distributions and characterization techniques. We will investigate the biases of different methods and discuss the different techniques that are appropriate for realistic environments. Finally, we will compare the data obtained from our characterization studies against accepted models (e.g., MODTRAN) and validate the usage of this unique capability as a controlled experimental realization of natural fog formations. By proving the capability, we will enable the testing and validation of future fog penetrating optical systems and providing a platform for performing optical propagation experimentation in a known, stable, and controlled environment.
A laboratory system was constructed that allows the super-micron particles to be aged for long periods of time under conditions that can simulate a range of natural environments and conditions, including relative humidity, oxidizing chemicals, organics and simulated solar radiation. Two proof-of-concept experiments using a non-biological simulant for biological particles and a biological simulant demonstrate the utility of these types of aging experiments. Green Visolite®, which is often used as a tracer material for model validation experiments, does not degrade with exposure to simulated solar radiation, the actual biological material does. This would indicate that Visolite® should be a good tracer compound for mapping the extent of a biological release using fluorescence as an indicator, but that it should not be used to simulate the decay of a biological particle when exposed to sunlight. The decay in the fluorescence measured for B. thurengiensis is similar to what has been previously observed in outdoor environments.
A unique aerosol flow chamber coupled with a bistatic LIDAR system was implemented to measure the optical scattering cross sections and depolarization ratio of common atmospheric particulates. Each of seven particle types (ammonium sulfate, ammonium nitrate, sodium chloride, potassium chloride, black carbon and Arizona road dust) was aged by three anthropogenically relevant mechanisms: 1. Sulfuric acid deposition, 2. Toluene ozonolysis reactions, and 3. m-Xylene ozonolysis reactions. The results of pure particle scattering properties were compared with their aged equivalents. Results show that as most particles age under industrial plume conditions, their scattering cross sections are similar to pure black carbon, which has significant impacts to our understanding of aerosol impacts on climate. In addition, evidence emerges that suggest chloride-containing aerosols are chemically altered during the organic aging process. Here we present the direct measured scattering cross section and depolarization ratios for pure and aged atmospheric particulates.