Investigation of deep levels in high-breakdown-voltage low-threading-dislocation-density vertical GaN P-i-N diodes
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Express
We demonstrate the selective layer disordering in intersubband Al0.028Ga0.972 N/AlN superlattices using a silicon nitride (SiNx) capping layer. The (SiNx) capped superlattice exhibits suppressed layer disordering under high-temperature annealing. In addition, the rate of layer disordering is reduced with increased SiNx thickness. The layer disordering is caused by Si diffusion, and the SiNx layer inhibits vacancy formation at the crystal surface and ultimately, the movement of Al and Ga atoms across the heterointerfaces. In conclusion, patterning of the SiNx layer results in selective layer disordering, an attractive method to integrate active and passive III–nitride-based intersubband devices.
Abstract not provided.
Journal of Applied Physics
The growth temperature dependence of Si doping efficiency and deep level defect formation was investigated for n-type Al0.7Ga0.3N. It was observed that dopant compensation was greatly reduced with reduced growth temperature. Furthermore, deep level optical spectroscopy and lighted capacitance-voltage were used to understand the role of acceptor-like deep level defects on doping efficiency. Deep level defects were observed at 2.34 eV, 3.56 eV, and 4.74 eV below the conduction band minimum. The latter two deep levels were identified as the major compensators because the reduction in their concentrations at reduced growth temperature correlated closely with the concomitant increase in free electron concentration. Possible mechanisms for the strong growth temperature dependence of deep level formation are considered, which includes thermodynamically driven compensating defect formation that can arise for a semiconductor with very large band gap energy, such as Al0.7Ga0.3N.
Abstract not provided.
Applied Physics Letters
Low p-type conductivity and high contact resistance remain a critical problem in wide band gap AlGaN-based ultraviolet light emitters due to the high acceptor ionization energy. In this work, interband tunneling is demonstrated for non-equilibrium injection of holes through the use of ultra-thin polarization-engineered layers that enhance tunneling probability by several orders of magnitude over a PN homojunction. Al0.3Ga0.7N interband tunnel junctions with a low resistance of 5.6 × 10-4 Ω cm2 were obtained and integrated on ultraviolet light emitting diodes. Tunnel injection of holes was used to realize GaN-free ultraviolet light emitters with bottom and top n-type Al0.3Ga0.7N contacts. At an emission wavelength of 327 nm, stable output power of 6 W/cm2 at a current density of 120 A/cm2 with a forward voltage of 5.9 V was achieved. This demonstration of efficient interband tunneling could enable device designs for higher efficiency ultraviolet emitters.
Abstract not provided.
Abstract not provided.
Physica Status Solidi (A) Applications and Materials Science
Electrical current leakage paths in AlGaN-based ultraviolet (UV) light-emitting diodes (LEDs) are identified using conductive atomic force microscopy. Open-core threading dislocations are found to conduct current through insulating Al
Journal of Applied Physics
Current-voltage (IV) characteristics of two AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with differing densities of open-core threading dislocations (nanopipes) are analyzed. A three-diode circuit is simulated to emulate the forward-bias IV characteristics of the DUV-LEDs, but is only able to accurately model the lower leakage current, lower nanopipe density DUV-LED. It was found that current leakage through the nanopipes in these structures is rectifying, despite nanopipes being previously established as inherently n-type. Using defect-sensitive etching, the nanopipes are revealed to terminate within the p-type GaN capping layer of the DUV-LEDs. The circuit model is modified to account for another p-n junction between the n-type nanopipes and the p-type GaN, and an excellent fit to the forward-bias IV characteristics of the leaky DUV-LED is achieved.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Electronic Materials
High hole concentrations in Al x Ga1-x N become increasingly difficult to obtain as the Al mole fraction increases. The problem is believed to be related to compensation, extended defects, and the band gap of the alloy. Whereas electrical measurements are commonly used to measure hole density, we used electron paramagnetic resonance (EPR) spectroscopy to investigate a defect related to the neutral Mg acceptor. The amount and symmetry of neutral Mg in MOCVD-grown Al x Ga1-x N with x = 0 to 0.28 was monitored for films with different dislocation densities and surface conditions. EPR measurements indicated that the amount of neutral Mg decreased by 60% in 900°C-annealed Al x Ga1-x N films for x = 0.18 and 0.28 as compared with x = 0.00 and 0.08. A decrease in the angular dependence of the EPR signal accompanied the increased x, suggesting a change in the local environment of the Mg. Neither dislocation density nor annealing conditions contribute to the reduced amount of neutral Mg in samples with the higher Al concentration. Rather, compensation is the simplest explanation of the observations, because a donor could both reduce the number of neutral acceptors and cause the variation in the angular dependence.
Abstract not provided.
We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.
ACS Photonics
(Figure Presented) We present the design, realization, and characterization of optical strong light-matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light-matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ∼0.8 eV (λ ∼1.55 μm) and a planar "dogbone" metamaterial structure. As the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. This strongly coupled entity could enable the realization of electrically tunable optical filters, a new class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.
Applied Physics Letters
Layer disordering and doping compensation of an Al0.028Ga0.972N/AlN superlattice by implantation are demonstrated. The as-grown sample exhibits intersubband absorption at ∼1.56 μm which is modified when subject to a silicon implantation. After implantation, the intersubband absorption decreases and shifts to longer wavelengths. Also, with increasing implant dose, the intersubband absorption decreases. It is shown that both layer disordering of the heterointerfaces and doping compensation from the vacancies produced during the implantation cause the changes in the intersubband absorption. Such a method is useful for removing absorption in spatially defined areas of III-nitride optoelectronic devices by, for example, creating low-loss optical waveguides monolithically that can be integrated with as-grown areas operating as electro-absorption intersubband modulators.
Abstract not provided.
Abstract not provided.
Journal of Applied Physics
Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al 0.7Ga0.3N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these open-core threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al0.7Ga0.3N templates are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations. © 2014 AIP Publishing LLC.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Gd2O3 films were prepared on (0001)-oriented AlxGa1-xN (0≤x≤0.67) thin film substrates via reactive molecular-beam epitaxy. X-ray diffraction revealed that these films possessed the cubic bixbyite structure regardless of substrate composition and were all 111-oriented with in-plane rotations to account for the symmetry difference between the oxide film and nitride epilayer. Valence band offsets were characterized by X-ray photoelectron spectroscopy and were determined to be 0.41±0.02eV, 0.17±0.02eV, and 0.06±0.03eV at the Gd2O3/AlxGa1-xN interfaces for x=0, 0.28, and 0.67, respectively.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nature Communications
Abstract not provided.
Nature Communications
Abstract not provided.
Abstract not provided.
Journal of Crystal Growth
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Semiconductor Science and Technology.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We present the results of a three year LDRD project that has focused on overcoming major materials roadblocks to achieving AlGaN-based deep-UV laser diodes. We describe our growth approach to achieving AlGaN templates with greater than ten times reduction of threading dislocations which resulted in greater than seven times enhancement of AlGaN quantum well photoluminescence and 15 times increase in electroluminescence from LED test structures. We describe the application of deep-level optical spectroscopy to AlGaN epilayers to quantify deep level energies and densities and further correlate defect properties with AlGaN luminescence efficiency. We further review our development of p-type short period superlattice structures as an approach to mitigate the high acceptor activation energies in AlGaN alloys. Finally, we describe our laser diode fabrication process, highlighting the development of highly vertical and smooth etched laser facets, as well as characterization of resulting laser heterostructures.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Proposed for publication in Applied Physics Letters.
Using a two-step method of plasma and wet chemical etching, we demonstrate smooth, vertical facets for use in Al{sub x} Ga{sub 1-x} N-based deep-ultraviolet laser-diode heterostructures where x = 0 to 0.5. Optimization of plasma-etching conditions included increasing both temperature and radiofrequency (RF) power to achieve a facet angle of 5 deg from vertical. Subsequent etching in AZ400K developer was investigated to reduce the facet surface roughness and improve facet verticality. The resulting combined processes produced improved facet sidewalls with an average angle of 0.7 deg from vertical and less than 2-nm root-mean-square (RMS) roughness, yielding an estimated reflectivity greater than 95% of that of a perfectly smooth and vertical facet.
Journal of Applied Physics
Abstract not provided.
Abstract not provided.
We present the results of a three year LDRD project which has focused on the development of novel, compact, ultraviolet solid-state sources and fluorescence-based sensing platforms that apply such devices to the sensing of biological and nuclear materials. We describe our development of 270-280 nm AlGaN-based semiconductor UV LEDs with performance suitable for evaluation in biosensor platforms as well as our development efforts towards the realization of a 340 nm AlGaN-based laser diode technology. We further review our sensor development efforts, including evaluation of the efficacy of using modulated LED excitation and phase sensitive detection techniques for fluorescence detection of bio molecules and uranyl-containing compounds.
Abstract not provided.
Journal of Crystal Growth
Abstract not provided.
Abstract not provided.
Abstract not provided.
GaN-based microwave power amplifiers have been identified as critical components in Sandia's next generation micro-Synthetic-Aperture-Radar (SAR) operating at X-band and Ku-band (10-18 GHz). To miniaturize SAR, GaN-based amplifiers are necessary to replace bulky traveling wave tubes. Specifically, for micro-SAR development, highly reliable GaN high electron mobility transistors (HEMTs), which have delivered a factor of 10 times improvement in power performance compared to GaAs, need to be developed. Despite the great promise of GaN HEMTs, problems associated with nitride materials growth currently limit gain, linearity, power-added-efficiency, reproducibility, and reliability. These material quality issues are primarily due to heteroepitaxial growth of GaN on lattice mismatched substrates. Because SiC provides the best lattice match and thermal conductivity, SiC is currently the substrate of choice for GaN-based microwave amplifiers. Obviously for GaN-based HEMTs to fully realize their tremendous promise, several challenges related to GaN heteroepitaxy on SiC must be solved. For this LDRD, we conducted a concerted effort to resolve materials issues through in-depth research on GaN/AlGaN growth on SiC. Repeatable growth processes were developed which enabled basic studies of these device layers as well as full fabrication of microwave amplifiers. Detailed studies of the GaN and AlGaN growth of SiC were conducted and techniques to measure the structural and electrical properties of the layers were developed. Problems that limit device performance were investigated, including electron traps, dislocations, the quality of semi-insulating GaN, the GaN/AlGaN interface roughness, and surface pinning of the AlGaN gate. Surface charge was reduced by developing silicon nitride passivation. Constant feedback between material properties, physical understanding, and device performance enabled rapid progress which eventually led to the successful fabrication of state of the art HEMT transistors and amplifiers.
We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.
Proposed for publication in Physica Status Solidi.
Experimental studies have been performed on the velocity-field characteristics of AlGaN/GaN heterostructures. A pulsed voltage input in combination with a four-point measurement was used in a 50 {Omega} environment to determinethe drift velocity of electrons in the two-dimensional electron gas as a function of the applied electric field. These measurements show an apparent saturation velocity near 3.1 x 10{sub 7} cm/s, at a field of 140 kV/cm. A comparison of these studies shows that the experimental velocities are close to previously published simulations based upon Monte Carlo techniques.
Proposed for publication in Applied Physics Letters.
Transmission electron microscopy and x-ray diffraction were used to assess the microstructure and strain of Al{sub x}Ga{sub 1?x}N(x = 0.61-0.64) layers grown on AlN. The compressively-strained AlGaN is partially relaxed by inclined threading dislocations, similar to observations on Si-doped AlGaN by P. Cantu, F. Wu, P. Waltereit, S. Keller, A. E. Romanov, U. K. Mishra, S. P. DenBaars, and J. S. Speck [Appl. Phys. Lett. 83, 674 (2003) ]; however, in our material, the dislocations bend before the introduction of any Si. The bending may be initiated by the greater lattice mismatch or the lower dislocation density of our material, but the presence of Si is not necessarily required. The relaxation by inclined dislocations is quantitatively accounted for with the model of A. E. Romanov and J. S. Speck [Appl. Phys. Lett. 83, 2569 (2003)], and we demonstrate the predicted linear dependence of relaxation on layer thickness. Notably, such relaxation was not found in tensile strained AlGaN grown on GaN [J. A. Floro, D. M. Follstaedt, P. Provencio, S. J. Hearne, and S. R. Lee, J. Appl. Phys. 96, 7087 (2004)], even though the same mechanism appears applicable.
Proposed for publication in Applied Spectroscopy.
Dipicolinic acid (DPA, 2,6-pyridinedicarboxylic acid) is a substance uniquely present in bacterial spores such as that from anthrax (B. anthracis). It is known that DPA can be detected by the long-lived fluorescence of its terbium chelate; the best limit of detection (LOD) reported thus far using a large benchtop gated fluorescence instrument using a pulsed Xe lamp is 2 nM. We use a novel AlGaN light-emitting diode (LED) fabricated on a sapphire substrate that has peak emission at 291 nm. Although the overlap of the emission band of this LED with the absorption band of Tb-DPA ({lambda}{sub max} doublet: 273, 279 nm) is not ideal, we demonstrate that a compact detector based on this LED and an off-the-shelf gated photodetection module can provide an LOD of 0.4 nM, thus providing a basis for convenient early warning detectors.
The goal of this one year LDRD was to improve the overall efficiency of InGaN LEDs by improving the extraction of light from the semiconductor chip. InGaN LEDs are currently the most promising technology for producing high efficiency blue and green semiconductor light emitters. Improving the efficiency of InGaN LEDs will enable a more rapid adoption of semiconductor based lighting. In this LDRD, we proposed to develop photonic structures to improve light extraction from nitride-based light emitting diodes (LEDs). While many advanced device geometries were considered for this work, we focused on the use of a photonic crystal for improved light extraction. Although resonant cavity LEDs and other advanced structures certainly have the potential to improve light extraction, the photonic crystal approach showed the most promise in the early stages of this short program. The photonic crystal (PX)-LED developed here incorporates a two dimensional photonic crystal, or photonic lattice, into a nitride-based LED. The dimensions of the photonic crystal are selected such that there are very few or no optical modes in the plane of the LED ('lateral' modes). This will reduce or eliminate any radiation in the lateral direction so that the majority of the LED radiation will be in vertical modes that escape the semiconductor, which will improve the light-extraction efficiency. PX-LEDs were fabricated using a range of hole diameters and lattice constants and compared to control LEDs without a photonic crystal. The far field patterns from the PX-LEDs were dramatically modified by the presence of the photonic crystal. An increase in LED brightness of 1.75X was observed for light measured into a 40 degree emission cone with a total increase in power of 1.5X for an unencapsulated LED.
Materials studies of high Al-content (> 30%) AlGaN epilayers and the performance of AlGaN-based LEDs with emission wavelengths shorter than 300 nm are reported. N-type AlGaN films with Al compositions greater than 30% reveal a reduction in conductivity with increasing Al composition. The reduction of threading dislocation density from the 1-5 x10{sup 10} cm{sup -2} range to the 6-9 x 10{sup 9}cm{sup -2} range results in an improvement of electrical conductivity and Al{sub 0.90}Ga{sub 0.10}N films with n= 1.6e17 cm-3 and f{acute Y}=20 cm2/Vs have been achieved. The design, fabrication and packaging of flip-chip bonded deep UV LEDs is described. Large area (1 mm x 1 mm) LED structures with interdigitated contacts demonstrate output powers of 2.25 mW at 297 nm and 1.3 mW at 276 nm when operated under DC current. 300 f{acute Y}m x 300 f{acute Y}m LEDs emitting at 295 nm and operated at 20 mA DC have demonstrated less than 50% drop in output power after more than 2400 hours of operation. Optimization of the electron block layer in 274 nm LED structures has enabled a significant reduction in deep level emission bands, and a peak quantum well to deep level ratio of 700:1 has been achieved for 300 f{acute Y}m x 300 f{acute Y}m LEDs operated at 100 mA DC. Shorter wavelength LED designs are described, and LEDs emitting at 260 nm, 254nm and 237 nm are reported.
The AlGaInN material system is used for virtually all advanced solid state lighting and short wavelength optoelectronic devices. Although metal-organic chemical vapor deposition (MOCVD) has proven to be the workhorse deposition technique, several outstanding scientific and technical challenges remain, which hinder progress and keep RD&A costs high. The three most significant MOCVD challenges are: (1) Accurate temperature measurement; (2) Reliable and reproducible p-doping (Mg); and (3) Low dislocation density GaN material. To address challenge (1) we designed and tested (on reactor mockup) a multiwafer, dual wavelength, emissivity-correcting pyrometer (ECP) for AlGaInN MOCVD. This system simultaneously measures the reflectance (at 405 and 550 nm) and emissivity-corrected temperature for each individual wafer, with the platen signal entirely rejected. To address challenge (2) we measured the MgCp{sub 2} + NH{sub 3} adduct condensation phase diagram from 65-115 C, at typical MOCVD concentrations. Results indicate that it requires temperatures of 80-100 C in order to prevent MgCp{sub 2} + NH{sub 3} adduct condensation. Modification and testing of our research reactor will not be complete until FY2005. A new commercial Veeco reactor was installed in early FY2004, and after qualification growth experiments were conducted to improve the GaN quality using a delayed recovery technique, which addresses challenge (3). Using a delayed recovery technique, the dislocation densities determined from x-ray diffraction were reduced from 2 x 10{sup 9} cm{sup -2} to 4 x 10{sup 8} cm{sup -2}. We have also developed a model to simulate reflectance waveforms for GaN growth on sapphire.
Proposed for publication in Applied Physics Letters.
We develop a reciprocal-space model that describes the (hkl) dependence of the broadened Bragg peakwidths produced by x-ray diffraction from a dislocated epilayer. We compare the model to experiments and find that it accurately describes the peakwidths of 16 different Bragg reflections in the [010] zone of both GaN and AlN heterolayers. Using lattice-distortion parameters determined by fitting the model to selected reflections, we estimate threading-dislocation densities for seven different GaN and AlGaN samples and find improved agreement with transmission electron microscopy measurements.
Proposed for publication in J. Vacuum Science and Technology-B.
Ohmic contacts on p-type GaN utilizing Pd/Ir/Au metallization were fabricated and characterized. Metallized samples that were rapid thermally annealed at 400 C for 1 min exhibited linear current-voltage characteristics. Specific ohmic contact resistivities as low as 2 x 10{sup -5} {Omega} cm{sup 2} were achieved. Auger electron spectroscopy and x-ray photoelectron spectroscopy depth profiles of annealed Pd/Ir/Au contact revealed the formation of Pd- and Ir-related alloys at the metal-semiconductor junction with the creation of Ga vacancies below the contact. The excellent contact resistance obtained is attributed to the formation of these Ga vacancies which resulted in the reduction of the depletion region width at the junction.
Proposed for publication in J. Vacuum Science and Technology B
Abstract not provided.
Forward-to-reverse bias step-recovery measurements were performed on In.07Ga.93N/GaN and Al.36Ga.64N/Al.46Ga.54N quantum-well (QW) light-emitting diodes grown on sapphire. With the QW sampling the minority-carrier hole density at a single position, distinctive two-phase optical decay curves were observed. Using diffusion equation solutions to self-consistently model both the electrical and optical responses, hole transport parameters tp = 758 {+-} 44 ns, Lp = 588 {+-} 45 nm, and up = 0.18 {+-} 0.02 cm2/Vs were obtained for GaN. The mobility was thermally activated with an activation energy of 52 meV, suggesting trap-modulated transport. Optical measurements of sub-bandgap peaks exhibited slow responses approaching the bulk lifetime. For Al.46Ga.54N, a longer lifetime of tp = 3.0 us was observed, and the diffusion length was shorter, Lp = 280 nm. Mobility was an order of magnitude smaller than in GaN, up = 10-2 cm2/Vs, and was insensitive to temperature, suggesting hole transport through a network of defects.
Proposed for publication in Applied Physics Letters.
We report micro-Raman studies of self-heating in an AlGaN/GaN heterostructure field-effect transistor using below (visible 488.0 nm) and near (UV 363.8 nm) GaN band-gap excitation. The shallow penetration depth of the UV light allows us to measure temperature rise ({Delta}T) in the two-dimensional electron gas (2DEG) region of the device between drain and source. Visible light gives the average {Delta}T in the GaN layer, and that of the SiC substrate, at the same lateral position. Combined, we depth profile the self-heating. Measured {Delta}T in the 2DEG is consistently over twice the average GaN-layer value. Electrical and thermal transport properties are simulated. We identify a hotspot, located at the gate edge in the 2DEG, as the prevailing factor in the self-heating.
Journal of Crystal Growth
Optical reflectance and atomic force microscopy (AFM) are used to develop a detailed description of GaN nucleation layer (NL) evolution upon annealing in ammonia and hydrogen to 1050°C. For the experiments, the GaN NLs were grown to a thickness of 30nm at 540°C, and then heated to 1050°C, following by holding at 1050°C for additional time. As the temperature, T, is increased, the NL decomposes uniformly beginning at 850°C up to 980°C as observed by the decrease in the optical reflectance signal and the absence of change in the NL AFM images. Decomposition of the original NL material drives the formation of GaN nuclei on top of the NL, which begin to appear on the NL near 1000°C, increasing the NL roughness. The GaN nuclei are formed by gas-phase transport of Ga atoms generated during the NL decomposition that recombine with ambient NH3. The gas-phase mechanism responsible for forming the GaN nuclei is demonstrated in two ways. First, the NL decomposition kinetics has an activation energy, EA, of 2.7 eV and this EA is observed in the NL roughening as the GaN nuclei increase in size. Second, the power spectral density functions measured with atomic force microscopy reveal that the GaN nuclei grow via an evaporation and recondensation mechanism. Once the original NL material is fully decomposed, the GaN nuclei stop growing in size and begin to decompose. For 30 nm thick NLs used in this study, approximately 1/3 of the NL Ga atoms are reincorporated into GaN nuclei. A detailed description of the NL evolution as it is heated to high temperature is presented, along with recommendations on how to enhance or reduce the NL decomposition and nuclei formation before high T GaN growth. © 2004 Elsevier B.V. All rights reserved.
The junction temperature of AlGaN/GaN ultraviolet (UV) Light-Emitting Diodes (LEDs) emitting at 295 nm is measured by using the temperature coefficients of the diode forward volt-age and emission peak energy. The high-energy slope of the spectrum is explored to measure the carrier temperature. A linear relation between junction temperature and current is found. Analysis of the experimental methods reveals that the diode-forward voltage is the most accurate method (,,b 3 ,,aC). A theoretical model for the dependence of the diode junction voltage (Vj) on junction temperature (T) is developed that takes into account the temperature dependence of the energy gap. A thermal resistance of 87.6 K/W is obtained with the AlGaN/GaN LED sample mounted with thermal paste on a heat sink.
Proceedings of SPIE - The International Society for Optical Engineering
An AlGaN Light-emitting diode (LED) emitting with a peak wavelength at 291 nm and a radiant power of 0.5 mW @ 100 mA was fabricated on a sapphire substrate. A compact gated fluorescence detection system was built using this LED as the excitation light source. We demonstrate that it provides sufficient power using Terbium enhanced fluorescence to detect subnanomolar concentrations of dipicolinic acid (DPA, 2, 6-pyridinedicarboxylic acid), a substance uniquely present in bacterial spores such as that from B. anthracis, providing a basis for convenient early warning detectors. We also describe initial results from a novel approach for biological aerosol detection using long lived fluorescence from a Europium tagged dye that binds to proteins.
Proposed for publication in the Applied Physics Letters.
The junction temperature of AlGaN ultraviolet light-emitting diodes emitting at 295 nm is measured by using the temperature coefficients of the diode forward voltage and emission peak energy. The high-energy slope of the spectrum is explored to measure the carrier temperature. A linear relation between junction temperature and current is found. Analysis of the experimental methods reveals that the diode-forward voltage is the most accurate ({+-}3 C). A theoretical model for the dependence of the diode forward voltage (V{sub f}) on junction temperature (T{sub j}) is developed that takes into account the temperature dependence of the energy gap. A thermal resistance of 87.6 K/W is obtained with the device mounted with thermal paste on a heat sink.
Proposed for publication in Science.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of Crystal Growth.
Solid-state light sources emitting at wavelengths less than 300 nm would enable technological advances in many areas such as fluorescence-based biological agent detection, non-line-of-sight communications, water purification, and industrial processing including ink drying and epoxy curing. In this paper, we present our recent progress in the development of LEDs with emission between 237 and 297 nm. We will discuss growth and design issues of deep-UV LEDs, including transport in Si-doped AlGaN layers. The LEDs are designed for bottom emission so that improved heat sinking and light extraction can be achieved by flip chipping. To date, we have demonstrated 2.25 mW of output power at 295 nm from 1 mm x 1 mm LEDs operated at 500 mA. Shorter wavelength LEDs emitting at 276 nm have achieved an output power of 1.3 mW at 400 mA. The heterostructure designs that we have employed have suppressed deep level emission to intensities that are up to 330 x lower than the primary quantum well emission.
This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSL GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and breakthroughs, with Chapters 1-5 devoted to the five technical task areas: 1 Fundamental Materials Physics; 2 111-Nitride Growth Chemistry and Substrate Physics; 3 111-Nitride MOCVD Reactor Design and In-Situ Monitoring; 4 Advanced Light-Emitting Devices; and 5 Phosphors and Encapsulants. Chapter 7 (Appendix A) contains a listing of publications, presentations, and patents. Finally, the SSL GCLDRD resulted in numerous actual and pending follow-on programs for Sandia, including multiple grants from DOE and the Defense Advanced Research Projects Agency (DARPA), and Cooperative Research and Development Agreements (CRADAs) with SSL companies. Many of these follow-on programs arose out of contacts developed through our External Advisory Committee (EAC). In h s and other ways, the EAC played a very important role. Chapter 8 (Appendix B) contains the full (unedited) text of the EAC reviews that were held periodically during the course of the project.
Proposed for publication in the Journal of Crystal Growth.
Abstract not provided.
Proposed for publication in Semiconductor Science and Technology.
AlGaN/GaN test structures were fabricated with an etched constriction. A nitrogen plasma treatment was used to remove the disordered layer, including natural oxides on the AlGaN surface, before the growth of the silicon nitride passivation film on several of the test structures. A pulsed voltage input, with a 200 ns pulse width, and a four-point measurement were used in a 50 {Omega} environment to determine the room temperature velocity-field characteristic of the structures. The samples performed similarly over low fields, giving a low-field mobility of 545 cm{sup 2} V{sup -1} s{sup -1}. The surface treated sample performed slightly better at higher fields than the untreated sample. The highest velocity measured was 1.25 x 10{sup 7} cm s{sup -1} at a field of 26 kV cm{sup -1}.
The goal of this LDRD was to investigate III-antimonide/nitride based materials for unique semiconductor properties and applications. Previous to this study, lack of basic information concerning these alloys restricted their use in semiconductor devices. Long wavelength emission on GaAs substrates is of critical importance to telecommunication applications for cost reduction and integration into microsystems. Currently InGaAsN, on a GaAs substrate, is being commercially pursued for the important 1.3 micrometer dispersion minima of silica-glass optical fiber; due, in large part, to previous research at Sandia National Laboratories. However, InGaAsN has not shown great promise for 1.55 micrometer emission which is the low-loss window of single mode optical fiber used in transatlantic fiber. Other important applications for the antimonide/nitride based materials include the base junction of an HBT to reduce the operating voltage which is important for wireless communication links, and for improving the efficiency of a multijunction solar cell. We have undertaken the first comprehensive theoretical, experimental and device study of this material with promising results. Theoretical modeling has identified GaAsSbN to be a similar or potentially superior candidate to InGaAsN for long wavelength emission on GaAs. We have confirmed these predictions by producing emission out to 1.66 micrometers and have achieved edge emitting and VCSEL electroluminescence at 1.3 micrometers. We have also done the first study of the transport properties of this material including mobility, electron/hole mass, and exciton reduced mass. This study has increased the understanding of the III-antimonide/nitride materials enough to warrant consideration for all of the target device applications.
Abstract not provided.
Proposed for publication in Journal of Applied Physics.
Abstract not provided.
IEEE Journal of Quantum Electronics
The wavelength splitting between the LP01 and LP11 modes of selectively oxidized, ion implanted, and hybrid ion implanted/selectively oxidized vertical-cavity surface-emitting lasers is studied by experiment and theory. Measured splittings at threshold show marked differences between the different laser structures due to the effects of index guiding and thermal lensing. Theoretical results were obtained using a vector optical mode solver and show good agreement with experimental results. The hybrid lasers exhibited behavior intermediate between the ion implanted and selectively oxidized lasers and could be optimized for high power single transverse mode emission.
This report describes the research accomplishments achieved under the LDRD Project ''High-Bandwidth Optical Data Interconnects for Satellite Applications.'' The goal of this LDRD has been to address the future needs of focal-plane-array (FPA) sensors by exploring the use of high-bandwidth fiber-optic interconnects to transmit FPA signals within a satellite. We have focused primarily on vertical-cavity surface-emitting laser (VCSEL) based transmitters, due to the previously demonstrated immunity of VCSELs to total radiation doses up to 1 Mrad. In addition, VCSELs offer high modulation bandwidth (roughly 10 GHz), low power consumption (roughly 5 mW), and high coupling efficiency (greater than -3dB) to optical fibers. In the first year of this LDRD, we concentrated on the task of transmitting analog signals from a cryogenic FPA to a remote analog-to-digital converter. In the second year, we considered the transmission of digital signals produced by the analog-to-digital converter to a remote computer on the satellite. Specifically, we considered the situation in which the FPA, analog-to-digital converter, and VCSEL-based transmitter were all cooled to cryogenic temperatures. This situation requires VCSELs that operate at cryogenic temperature, dissipate minimal heat, and meet the electrical drive requirements in terms of voltage, current, and bandwidth.
Proposed for publication in Physical Review B.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We have used selective AlGaAs oxidation, dry-etching, and high-gain semiconductor laser simulation to create new in-plane lasers with interconnecting passive waveguides for use in high-density photonic circuits and future integration of photonics with electronics. Selective oxidation and doping of semiconductor heterostructures have made vertical cavity surface emitting lasers (VCSELs) into the world's most efficient low-power lasers. We apply oxidation technology to improve edge-emitting lasers and photonic-crystal waveguides, making them suitable for monolithic integrated microsystems. Two types of lasers are investigated: (1) a ridge laser with resonant coupling to an output waveguide; (2) a selectively-oxidized laser with a low active volume and potentially sub-milliAmp threshold current. Emphasis is on development of high-performance lasers suited for monolithic integration with photonic circuit elements.
Proceedings of SPIE - The International Society for Optical Engineering
InxGa1-xAs1-yNy quaternary alloys offer the promise of longer wavelength, ≥ 1.3 μm optical transceivers grown on GaAs substrates. To achieve acceptable radiative efficiencies at 1.3 μm, highly-strained InGaAsN quantum wells (x ≈ 0.4, y ≈ 0.005) are being developed as laser active regions. By introducing GaAsP layers into the active region for strain-compensation, gain can be increased using multiple InGaAsN quantum wells. In this work, we report the first strain-compensated, 1.3 μm InGaAsN MQW lasers. Our devices were grown by metal-organic chemical vapor deposition. Lasers with InGaAsN quantum well active regions are proving superior to lasers constructed with competing active region materials. Under pulsed operation, our 1.3 μm InGaAsN lasers displayed negligible blue-shift from the low-injection LED emission, and state-of-the-art characteristic temperature (159 K) was obtained for a 1.3 μm laser.
Conference Digest - IEEE International Semiconductor Laser Conference
Selectively oxidized vertical cavity surface emitting lasers (VCSEL) typically operate in multiple transverse optical modes. High power VCSEL operation is desirable for many applications such as optical storage and printing, modulation spectroscopy, bar code scanning, and data communication over single mode optical fiber. The modal discrimination can be augmented by creating a central region of gain surrounded by a region of optical loss. A VCSEL fabricated via hybrid ion implantation and selective oxidation device structure is designed to demonstrate a single mode output of more than 5 mW for 850 nm.
Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS
A record high fundamental-mode power of 5.1 mW was achieved from coupled-resonator vertical-cavity lasers (CRVCLs). In conventional VCSELs, the extent to which the gain volume may be increased is limited by the onset of multi-mode operation. Results indicate that this limitation is circumvented in a coupled-resonator device allowing high power fundamental-mode operation.
Conference Digest - IEEE International Semiconductor Laser Conference
The continuous wave operation of 1.3 μm vertical cavity surface emitting laser (VCSEL) grown on GaAs substrates is achieved up to 55 °C, as motivated by demands of emerging VCSEL network applications. These VCSELs employ the mature AlGaAs/GaAs distributed Bragg reflector mirror technology, including selective oxidation for efficient cavity designs. By incorporating a tunnel junction near the optical cavity, both mirrors are doped n-type, which provides the benefits of low optical loss.
Abstract not provided.
Applied Physics Letters
The authors report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 {micro}W to the electrical power applied to the top cavity. Theoretical analysis suggests that the bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point.
Electronic Letters
Selectively oxidized vertical cavity lasers emitting at 1294 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave at and above room temperature. The lasers employ two n-type Al{sub 0.94}Ga{sub 0.06}As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the optical cavity, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55 C. These lasers exhibit the longest wavelength reported to date for vertical cavity surface emitting lasers grown on GaAs substrates.
The optical gain spectra for GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of the lasing threshold current density of GaInNAs/GaAs quantum well structures.
Applied Physics Letters
Electron and hole transport in compensated, InGaAsN ({approx} 2% N) are examined through Hall mobility, photoconductivity, and solar cell photoresponse measurements. Short minority carrier diffusion lengths, photoconductive-response spectra, and doping dependent, thermally activated Hall mobilities reveal a broad distribution of localized states. At this stage of development, lateral carrier transport appears to be limited by large scale (>> mean free path) material inhomogeneities, not a random alloy-induced mobility edge.
The authors have developed electrically-injected coupled-resonator vertical-cavity lasers and have studied their novel properties. These monolithically grown coupled-cavity structures have been fabricated with either one active and one passive cavity or with two active cavities. All devices use a selectively oxidized current aperture in the lower cavity, while a proton implant was used in the active-active structures to confine current in the top active cavity. They have demonstrated optical modulation from active-passive devices where the modulation arises from dynamic changes in the coupling between the active and passive cavities. The laser intensity can be modulated by either forward or reverse biasing the passive cavity. They have also observed Q-switched pulses from active-passive devices with pulses as short as 150 ps. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulseshape. They have designed and demonstrated the operation of active-active devices which la.se simultaneously at both longitudinal cavity resonances. Extremely large bistable regions have also been observed in the light-current curves for active-active coupled resonator devices. This bistability can be used for high contrast switching with contrast ratios as high as 100:1. Coupled-resonator vertical-cavity lasers have shown enhanced mode selectivity which has allowed devices to lase with fundamental-mode output powers as high as 5.2 mW.
Applied Physics Letters
Previously, an effective index optical model was introduced for the analysis of lateral waveguiding effects in vertical-cavity surface-emitting lasers. The authors show that the resultant transverse equation is almost identical to the one typically obtained in the analysis of dielectric waveguide problems, such as a step-index optical fiber. The solution to the transverse equation yields the lateral dependence of the optical field and, as is recognized in this paper, the discrete frequencies of the microcavity modes. As an example, they apply this technique to the analysis of vertical-cavity lasers that contain thin-oxide apertures. The model intuitively explains the experimental data and makes quantitative predictions in good agreement with a highly accurate numerical model.
IEEE Photonics Technology Letters
An edge-emitting buried-oxide waveguide (BOW) laser structure employing lateral selective oxidation of AlGaAs layers above and below the active region for waveguiding and current confinement is presented. This laser configuration has the potential for very small lateral optical mode size and high current confinement and is well suited for integrated optics applications where threshold current and overall efficiency are paramount. Optimization of the waveguide design, oxide layer placement, and bi-parabolic grading of the heterointerfaces on both sides of the AlGaAs oxidation layers has yielded 95% external differential quantum efficiency and 40% wall-plug efficiency from a laser that is very simple to fabricate and does not require epitaxial regrowth of any kind.
Nature
A two-dimensional (2D) photonic crystal is an attractive alternative and complimentary to its 3D counterpart, due to fabrication simplicity. A 2D crystal, however, confines light only in the 2D plane, but not in the third direction, the z-direction. Earlier experiments show that such a 2D system can exist, providing that the boundary effect in z-direction is negligible and that light is collimated in the 2D plane. Nonetheless, the usefulness of such 2D crystals is limited because they are incapable of guiding light in z-direction, which leads to diffraction loss. This drawback presents a major obstacle for realizing low-loss 2D crystal waveguides, bends and thresholdless lasers. A recent theoretical calculation, though, suggests a novel way to eliminate such a loss with a 2D photonic crystal slab. The concept of a lightcone is introduced as a criterion for fully guiding and controlling light. Although the leaky modes of a crystal slab have been studied, there have until now no experimental reports on probing its guided modes and band gaps. In this paper, a waveguide-coupled 2D photonic crystal slab is successfully fabricated from a GaAs/Al{sub x}O{sub y} material system and its intrinsic transmission properties are studied. The crystal slab is shown to have a strong 2D band gap at {lambda} {approximately} 1.5 {micro}m. Light attenuates as much as {approximately}5dB per period in the gap, the strongest ever reported for any 2D photonic crystal in optical {lambda}. More importantly, for the first time, the crystal slab is shown to be capable of controlling light fully in all three-dimensions. The lightcone criterion is also experimentally confirmed.
Applied Physics Letters
The authors report Q-switched operation from an electrically-injected monolithic coupled-resonator structure which consists of an active cavity with InGaAs quantum wells optically coupled to a passive cavity. The passive cavity contains a bulk GaAs region which is reverse-biased to provide variable absorption at the lasing wavelength of 990 nm. Cavity coupling is utilized to effect large changes in output intensity with only very small changes in passive cavity absorption. The device is shown to produce pulses as short as 150 ps at repetition rates as high 4 GHz. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulse shape. Small-signal frequency response measurements also show a transition from a slower ({approximately} 300 MHZ) forward-biased modulation regime to a faster ({approximately} 2 GHz) modulation regime under reverse-bias operation.
Physical Review B
The authors report a measurement of the variation of the value of the linewidth of an excitonic transition in InGaAsN alloys (1 and 2% nitrogen) as a function of hydrostatic pressure using photoluminescence spectroscopy. The samples were grown by metal-organic chemical vapor deposition and the photoluminescence measurements were performed a 4K. The authors find that the value of the excitonic linewidth increases as a function of pressure until about 100 kbars after which it tends to saturate. This change in the excitonic linewidth is used to derive the pressure variation of the reduced mass of the exciton using a theoretical formalism which is based on the premise that the broadening of the excitonic transition is caused primarily by compositional fluctuations in a completely disordered alloy. The variation of the excitonic reduced mass thus derived is compared with that recently determined using a first-principles band structure calculation based on local density approximation.
Proceedings of SPIE - The International Society for Optical Engineering
The variation of the value of the linewidth of an excitonic transition in InGaAsN alloys (1% and 2% nitrogen) as a function of hydrostatic pressure using photoluminescence spectroscopy is studied at 4 K. The excitonic linewidth increases as a function of pressure until about 100 kbar after which it tends to saturate. This pressure dependent excitonic linewidth is used to derive the pressure variation of the exciton reduced mass using a theoretical formalism based on the premise that the broadening of the excitonic transition is caused primarily by compositional fluctuations in a completely disordered alloy. The linewidth derived ambient pressure masses are compared and found to be in agreement with other mass measurements. The variation of this derived mass is compared with the results from a nearly first-principles approach in which calculations based on the local density approximation to the Kohn-Sham density functional theory are corrected using a small amount of experimental input.
Proceedings of SPIE - The International Society for Optical Engineering
We have designed and assembled two generations of integrated micro-optical systems that deliver pump light and detect broadband laser-induced fluorescence in micro-fluidic chemical separation systems employing electrochromatography. The goal is to maintain the sensitivity attainable with larger, tabletop machines while decreasing package size and increasing throughput (by decreasing the required chemical volume). One type of micro-optical system uses vertical-cavity surface-emitting lasers (VCSELs) as the excitation source. Light from the VCSELs is relayed with four-level surface relief diffractive optical elements (DOEs) and delivered to the chemical volume through substrate-mode propagation. Indirect fluorescence from dye-quenched chemical species is collected and collimated with a high numerical aperture DOE. A filter blocks the excitation wavelength, and the resulting signal is detected as the chemical separation proceeds. Variations of this original design include changing the combination of reflective and transmissive DOEs and optimizing the high numerical aperture DOE with a rotationally symmetric iterative discrete on-axis algorithm. We will discuss the results of these implemented optimizations.
The authors have developed diode lasers for short pulse duration and high peak pulse power in the 0.01--100.0 m pulsewidth regime. A primary goal of the program was producing up to 10 W while maintaining good far-field beam quality and ease of manufacturability for low cost. High peak power, 17 W, picosecond pulses have been achieved by gain switching of flared geometry waveguide lasers and amplifiers. Such high powers area world record for this type of diode laser. The light emission pattern from diode lasers is of critical importance for sensing systems such as range finding and chemical detection. They have developed a new integrated optical beam transformer producing rib-waveguide diode lasers with a symmetric, low divergence, output beam and increased upper power limits for irreversible facet damage.
Proceedings of SPIE - The International Society for Optical Engineering
The impressive performance improvements of laterally oxidized VCSELs come at the expense of increased fabrication complexity for 2-dimensional arrays. Since the epitaxial layers to be wet-thermally oxidized must be exposed, non-planarity can be an issue. This is particularly important in that electrical contact to both the anode and cathode of the diode must be brought out to a package. We have investigated four fabrication sequences suitable for the fabrication of 2-dimensional VCSEL arrays. These techniques include: mesa etched polymer planarized, mesa etched bridge contacted, mesa etched oxide isolated (where the electrical trace is isolated from the substrate during the oxidation) and oxide/implant isolation (oxidation through small via holes) all of which result in VCSELs with outstanding performance. The suitability of these processes for manufacturing are assessed relative to oxidation uniformity, device capacitance, and structural ruggedness for packaging.
Proceedings of SPIE - The International Society for Optical Engineering
Vertical cavity surface emitting lasers (VCSELs) which operate in multiple transverse optical modes have been rapidly adopted into present data communication applications which rely on multi-mode optical fiber. However, operation only in the fundamental mode is required for free space interconnects and numerous other emerging VCSEL applications. Two device design strategies for obtaining single mode lasing in VCSELs based on mode selective loss or mode selective gain are reviewed and compared. Mode discrimination is attained with the use of a thick tapered oxide aperture positioned at a longitudinal field null. Mode selective gain is achieved by defining a gain aperture within the VCSEL active region to preferentially support the fundamental mode. VCSELs which exhibit greater than 3 mW of single mode output power at 850 nm with mode suppression ratio greater than 30 dB are reported.