Publications

Results 301–318 of 318
Skip to search filters

5.2 mW single-mode power from a coupled-resonator vertical-cavity laser

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS

Fischer, Arthur J.; Choquette, K.D.; Chow, Weng W.; Allerman, A.A.; Geib, K.M.

A record high fundamental-mode power of 5.1 mW was achieved from coupled-resonator vertical-cavity lasers (CRVCLs). In conventional VCSELs, the extent to which the gain volume may be increased is limited by the onset of multi-mode operation. Results indicate that this limitation is circumvented in a coupled-resonator device allowing high power fundamental-mode operation.

More Details

Continuous wave operation of 1.3 μm vertical cavity InGaAsN quantum well lasers

Conference Digest - IEEE International Semiconductor Laser Conference

Fischer, Arthur J.; Klem, John F.; Choquette, K.D.; Blum, O.; Allerman, A.A.; Fritz, I.J.; Kurtz, S.R.; Breiland, William G.; Sieg, R.; Geib, K.M.; Scott, J.W.; Naone, R.L.

The continuous wave operation of 1.3 μm vertical cavity surface emitting laser (VCSEL) grown on GaAs substrates is achieved up to 55 °C, as motivated by demands of emerging VCSEL network applications. These VCSELs employ the mature AlGaAs/GaAs distributed Bragg reflector mirror technology, including selective oxidation for efficient cavity designs. By incorporating a tunnel junction near the optical cavity, both mirrors are doped n-type, which provides the benefits of low optical loss.

More Details

Bistable Output from a Coupled-Resonator Vertical-Cavity Laser Diode

Applied Physics Letters

Fischer, Arthur J.; Choquette, K.D.; Chow, Weng W.; Allerman, A.A.; Geib, K.M.

The authors report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 {micro}W to the electrical power applied to the top cavity. Theoretical analysis suggests that the bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point.

More Details

Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um

Electronic Letters

Choquette, K.D.; Geib, K.M.; Klem, John F.; Fischer, Arthur J.; Spahn, Olga B.; Allerman, A.A.; Fritz, I.J.; Kurtz, S.R.; Breiland, William G.

Selectively oxidized vertical cavity lasers emitting at 1294 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave at and above room temperature. The lasers employ two n-type Al{sub 0.94}Ga{sub 0.06}As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the optical cavity, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55 C. These lasers exhibit the longest wavelength reported to date for vertical cavity surface emitting lasers grown on GaAs substrates.

More Details

GaInNAs laser gain

Chow, Weng W.; Jones, E.D.; Modine, N.A.; Kurtz, S.R.; Allerman, A.A.

The optical gain spectra for GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of the lasing threshold current density of GaInNAs/GaAs quantum well structures.

More Details

Minority carrier diffusion, defects, and localization in InGaAsN with 2% nitrogen

Applied Physics Letters

Kurtz, S.R.; Allerman, A.A.; Seager, Carleton H.; Jones, E.D.

Electron and hole transport in compensated, InGaAsN ({approx} 2% N) are examined through Hall mobility, photoconductivity, and solar cell photoresponse measurements. Short minority carrier diffusion lengths, photoconductive-response spectra, and doping dependent, thermally activated Hall mobilities reveal a broad distribution of localized states. At this stage of development, lateral carrier transport appears to be limited by large scale (>> mean free path) material inhomogeneities, not a random alloy-induced mobility edge.

More Details

Composite Resonator Surface Emitting Lasers

Fischer, Arthur J.; Choquette, K.D.; Chow, Weng W.; Allerman, A.A.; Geib, K.M.

The authors have developed electrically-injected coupled-resonator vertical-cavity lasers and have studied their novel properties. These monolithically grown coupled-cavity structures have been fabricated with either one active and one passive cavity or with two active cavities. All devices use a selectively oxidized current aperture in the lower cavity, while a proton implant was used in the active-active structures to confine current in the top active cavity. They have demonstrated optical modulation from active-passive devices where the modulation arises from dynamic changes in the coupling between the active and passive cavities. The laser intensity can be modulated by either forward or reverse biasing the passive cavity. They have also observed Q-switched pulses from active-passive devices with pulses as short as 150 ps. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulseshape. They have designed and demonstrated the operation of active-active devices which la.se simultaneously at both longitudinal cavity resonances. Extremely large bistable regions have also been observed in the light-current curves for active-active coupled resonator devices. This bistability can be used for high contrast switching with contrast ratios as high as 100:1. Coupled-resonator vertical-cavity lasers have shown enhanced mode selectivity which has allowed devices to lase with fundamental-mode output powers as high as 5.2 mW.

More Details

Effective index model predicts modal frequencies of vertical-cavity lasers

Applied Physics Letters

Serkland, Darwin K.; Hadley, G.R.; Choquette, K.D.; Geib, K.M.; Allerman, A.A.

Previously, an effective index optical model was introduced for the analysis of lateral waveguiding effects in vertical-cavity surface-emitting lasers. The authors show that the resultant transverse equation is almost identical to the one typically obtained in the analysis of dielectric waveguide problems, such as a step-index optical fiber. The solution to the transverse equation yields the lateral dependence of the optical field and, as is recognized in this paper, the discrete frequencies of the microcavity modes. As an example, they apply this technique to the analysis of vertical-cavity lasers that contain thin-oxide apertures. The model intuitively explains the experimental data and makes quantitative predictions in good agreement with a highly accurate numerical model.

More Details

Highly-Efficient Buried-Oxide-Waveguide Laser by selective Oxidation

IEEE Photonics Technology Letters

Vawter, Gregory A.; Spahn, Olga B.; Allerman, A.A.

An edge-emitting buried-oxide waveguide (BOW) laser structure employing lateral selective oxidation of AlGaAs layers above and below the active region for waveguiding and current confinement is presented. This laser configuration has the potential for very small lateral optical mode size and high current confinement and is well suited for integrated optics applications where threshold current and overall efficiency are paramount. Optimization of the waveguide design, oxide layer placement, and bi-parabolic grading of the heterointerfaces on both sides of the AlGaAs oxidation layers has yielded 95% external differential quantum efficiency and 40% wall-plug efficiency from a laser that is very simple to fabricate and does not require epitaxial regrowth of any kind.

More Details

Three-dimensional control of light in a two-dimensional photonic crystal slab

Nature

Allerman, A.A.; Lin, Shawn-Yu L.; Lin, Shawn-Yu L.; Wendt, J.R.; Vawter, Gregory A.; Zubrzycki, Walter J.

A two-dimensional (2D) photonic crystal is an attractive alternative and complimentary to its 3D counterpart, due to fabrication simplicity. A 2D crystal, however, confines light only in the 2D plane, but not in the third direction, the z-direction. Earlier experiments show that such a 2D system can exist, providing that the boundary effect in z-direction is negligible and that light is collimated in the 2D plane. Nonetheless, the usefulness of such 2D crystals is limited because they are incapable of guiding light in z-direction, which leads to diffraction loss. This drawback presents a major obstacle for realizing low-loss 2D crystal waveguides, bends and thresholdless lasers. A recent theoretical calculation, though, suggests a novel way to eliminate such a loss with a 2D photonic crystal slab. The concept of a lightcone is introduced as a criterion for fully guiding and controlling light. Although the leaky modes of a crystal slab have been studied, there have until now no experimental reports on probing its guided modes and band gaps. In this paper, a waveguide-coupled 2D photonic crystal slab is successfully fabricated from a GaAs/Al{sub x}O{sub y} material system and its intrinsic transmission properties are studied. The crystal slab is shown to have a strong 2D band gap at {lambda} {approximately} 1.5 {micro}m. Light attenuates as much as {approximately}5dB per period in the gap, the strongest ever reported for any 2D photonic crystal in optical {lambda}. More importantly, for the first time, the crystal slab is shown to be capable of controlling light fully in all three-dimensions. The lightcone criterion is also experimentally confirmed.

More Details

Q-switched operation of a coupled-resonator vertical-cavity laser diode

Applied Physics Letters

Fischer, Arthur J.; Chow, Weng W.; Choquette, K.D.; Allerman, A.A.; Geib, K.M.

The authors report Q-switched operation from an electrically-injected monolithic coupled-resonator structure which consists of an active cavity with InGaAs quantum wells optically coupled to a passive cavity. The passive cavity contains a bulk GaAs region which is reverse-biased to provide variable absorption at the lasing wavelength of 990 nm. Cavity coupling is utilized to effect large changes in output intensity with only very small changes in passive cavity absorption. The device is shown to produce pulses as short as 150 ps at repetition rates as high 4 GHz. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulse shape. Small-signal frequency response measurements also show a transition from a slower ({approximately} 300 MHZ) forward-biased modulation regime to a faster ({approximately} 2 GHz) modulation regime under reverse-bias operation.

More Details

Photoluminescence-linewidth-derived exciton mass for InGaAsN alloys

Physical Review B

Jones, E.D.; Allerman, A.A.; Kurtz, S.R.; Modine, N.A.

The authors report a measurement of the variation of the value of the linewidth of an excitonic transition in InGaAsN alloys (1 and 2% nitrogen) as a function of hydrostatic pressure using photoluminescence spectroscopy. The samples were grown by metal-organic chemical vapor deposition and the photoluminescence measurements were performed a 4K. The authors find that the value of the excitonic linewidth increases as a function of pressure until about 100 kbars after which it tends to saturate. This change in the excitonic linewidth is used to derive the pressure variation of the reduced mass of the exciton using a theoretical formalism which is based on the premise that the broadening of the excitonic transition is caused primarily by compositional fluctuations in a completely disordered alloy. The variation of the excitonic reduced mass thus derived is compared with that recently determined using a first-principles band structure calculation based on local density approximation.

More Details

Effective masses for small nitrogen concentrations in InGaAsN alloys on GaAs

Proceedings of SPIE - The International Society for Optical Engineering

Jones, E.D.; Allerman, A.A.; Kurtz, S.R.; Fritz, I.J.; Modine, N.A.; Sieg, R.M.; Bajaj, K.K.; Tozer, S.W.; Wei, X.

The variation of the value of the linewidth of an excitonic transition in InGaAsN alloys (1% and 2% nitrogen) as a function of hydrostatic pressure using photoluminescence spectroscopy is studied at 4 K. The excitonic linewidth increases as a function of pressure until about 100 kbar after which it tends to saturate. This pressure dependent excitonic linewidth is used to derive the pressure variation of the exciton reduced mass using a theoretical formalism based on the premise that the broadening of the excitonic transition is caused primarily by compositional fluctuations in a completely disordered alloy. The linewidth derived ambient pressure masses are compared and found to be in agreement with other mass measurements. The variation of this derived mass is compared with the results from a nearly first-principles approach in which calculations based on the local density approximation to the Kohn-Sham density functional theory are corrected using a small amount of experimental input.

More Details

Integrated optical systems for excitation delivery and broadband detection in micro-fluidic electrochromatography

Proceedings of SPIE - The International Society for Optical Engineering

Kemme, S.A.; Warren, M.E.; Sweatt, W.C.; Wendt, J.R.; Bailey, C.G.; Matzke, C.M.; Allerman, A.A.; Arnold, D.W.; Carter, T.R.; Asbill, R.E.; Samora, S.

We have designed and assembled two generations of integrated micro-optical systems that deliver pump light and detect broadband laser-induced fluorescence in micro-fluidic chemical separation systems employing electrochromatography. The goal is to maintain the sensitivity attainable with larger, tabletop machines while decreasing package size and increasing throughput (by decreasing the required chemical volume). One type of micro-optical system uses vertical-cavity surface-emitting lasers (VCSELs) as the excitation source. Light from the VCSELs is relayed with four-level surface relief diffractive optical elements (DOEs) and delivered to the chemical volume through substrate-mode propagation. Indirect fluorescence from dye-quenched chemical species is collected and collimated with a high numerical aperture DOE. A filter blocks the excitation wavelength, and the resulting signal is detected as the chemical separation proceeds. Variations of this original design include changing the combination of reflective and transmissive DOEs and optimizing the high numerical aperture DOE with a rotationally symmetric iterative discrete on-axis algorithm. We will discuss the results of these implemented optimizations.

More Details

Advanced laser diodes for sensing applications

Vawter, Gregory A.; Mar, Alan M.; Chow, Weng W.; Allerman, A.A.

The authors have developed diode lasers for short pulse duration and high peak pulse power in the 0.01--100.0 m pulsewidth regime. A primary goal of the program was producing up to 10 W while maintaining good far-field beam quality and ease of manufacturability for low cost. High peak power, 17 W, picosecond pulses have been achieved by gain switching of flared geometry waveguide lasers and amplifiers. Such high powers area world record for this type of diode laser. The light emission pattern from diode lasers is of critical importance for sensing systems such as range finding and chemical detection. They have developed a new integrated optical beam transformer producing rib-waveguide diode lasers with a symmetric, low divergence, output beam and increased upper power limits for irreversible facet damage.

More Details

Comparison of fabrication approaches for selectively oxidized VCSEL arrays

Proceedings of SPIE - The International Society for Optical Engineering

Geib, K.M.; Choquette, K.D.; Allerman, A.A.; Briggs, R.D.; Hindi, J.J.

The impressive performance improvements of laterally oxidized VCSELs come at the expense of increased fabrication complexity for 2-dimensional arrays. Since the epitaxial layers to be wet-thermally oxidized must be exposed, non-planarity can be an issue. This is particularly important in that electrical contact to both the anode and cathode of the diode must be brought out to a package. We have investigated four fabrication sequences suitable for the fabrication of 2-dimensional VCSEL arrays. These techniques include: mesa etched polymer planarized, mesa etched bridge contacted, mesa etched oxide isolated (where the electrical trace is isolated from the substrate during the oxidation) and oxide/implant isolation (oxidation through small via holes) all of which result in VCSELs with outstanding performance. The suitability of these processes for manufacturing are assessed relative to oxidation uniformity, device capacitance, and structural ruggedness for packaging.

More Details

Single transverse mode selectively oxidized vertical cavity lasers

Proceedings of SPIE - The International Society for Optical Engineering

Choquette, K.D.; Geib, K.M.; Briggs, R.D.; Allerman, A.A.; Hindi, Jana J.

Vertical cavity surface emitting lasers (VCSELs) which operate in multiple transverse optical modes have been rapidly adopted into present data communication applications which rely on multi-mode optical fiber. However, operation only in the fundamental mode is required for free space interconnects and numerous other emerging VCSEL applications. Two device design strategies for obtaining single mode lasing in VCSELs based on mode selective loss or mode selective gain are reviewed and compared. Mode discrimination is attained with the use of a thick tapered oxide aperture positioned at a longitudinal field null. Mode selective gain is achieved by defining a gain aperture within the VCSEL active region to preferentially support the fundamental mode. VCSELs which exhibit greater than 3 mW of single mode output power at 850 nm with mode suppression ratio greater than 30 dB are reported.

More Details
Results 301–318 of 318
Results 301–318 of 318