Low resistance ohmic contact to p-type GaN using Pd/Ir/Au
Proposed for publication in J. Vacuum Science and Technology B
Abstract not provided.
Proposed for publication in J. Vacuum Science and Technology B
Abstract not provided.
Forward-to-reverse bias step-recovery measurements were performed on In.07Ga.93N/GaN and Al.36Ga.64N/Al.46Ga.54N quantum-well (QW) light-emitting diodes grown on sapphire. With the QW sampling the minority-carrier hole density at a single position, distinctive two-phase optical decay curves were observed. Using diffusion equation solutions to self-consistently model both the electrical and optical responses, hole transport parameters tp = 758 {+-} 44 ns, Lp = 588 {+-} 45 nm, and up = 0.18 {+-} 0.02 cm2/Vs were obtained for GaN. The mobility was thermally activated with an activation energy of 52 meV, suggesting trap-modulated transport. Optical measurements of sub-bandgap peaks exhibited slow responses approaching the bulk lifetime. For Al.46Ga.54N, a longer lifetime of tp = 3.0 us was observed, and the diffusion length was shorter, Lp = 280 nm. Mobility was an order of magnitude smaller than in GaN, up = 10-2 cm2/Vs, and was insensitive to temperature, suggesting hole transport through a network of defects.
Proposed for publication in Applied Physics Letters.
We report micro-Raman studies of self-heating in an AlGaN/GaN heterostructure field-effect transistor using below (visible 488.0 nm) and near (UV 363.8 nm) GaN band-gap excitation. The shallow penetration depth of the UV light allows us to measure temperature rise ({Delta}T) in the two-dimensional electron gas (2DEG) region of the device between drain and source. Visible light gives the average {Delta}T in the GaN layer, and that of the SiC substrate, at the same lateral position. Combined, we depth profile the self-heating. Measured {Delta}T in the 2DEG is consistently over twice the average GaN-layer value. Electrical and thermal transport properties are simulated. We identify a hotspot, located at the gate edge in the 2DEG, as the prevailing factor in the self-heating.
Journal of Crystal Growth
Optical reflectance and atomic force microscopy (AFM) are used to develop a detailed description of GaN nucleation layer (NL) evolution upon annealing in ammonia and hydrogen to 1050°C. For the experiments, the GaN NLs were grown to a thickness of 30nm at 540°C, and then heated to 1050°C, following by holding at 1050°C for additional time. As the temperature, T, is increased, the NL decomposes uniformly beginning at 850°C up to 980°C as observed by the decrease in the optical reflectance signal and the absence of change in the NL AFM images. Decomposition of the original NL material drives the formation of GaN nuclei on top of the NL, which begin to appear on the NL near 1000°C, increasing the NL roughness. The GaN nuclei are formed by gas-phase transport of Ga atoms generated during the NL decomposition that recombine with ambient NH3. The gas-phase mechanism responsible for forming the GaN nuclei is demonstrated in two ways. First, the NL decomposition kinetics has an activation energy, EA, of 2.7 eV and this EA is observed in the NL roughening as the GaN nuclei increase in size. Second, the power spectral density functions measured with atomic force microscopy reveal that the GaN nuclei grow via an evaporation and recondensation mechanism. Once the original NL material is fully decomposed, the GaN nuclei stop growing in size and begin to decompose. For 30 nm thick NLs used in this study, approximately 1/3 of the NL Ga atoms are reincorporated into GaN nuclei. A detailed description of the NL evolution as it is heated to high temperature is presented, along with recommendations on how to enhance or reduce the NL decomposition and nuclei formation before high T GaN growth. © 2004 Elsevier B.V. All rights reserved.
The junction temperature of AlGaN/GaN ultraviolet (UV) Light-Emitting Diodes (LEDs) emitting at 295 nm is measured by using the temperature coefficients of the diode forward volt-age and emission peak energy. The high-energy slope of the spectrum is explored to measure the carrier temperature. A linear relation between junction temperature and current is found. Analysis of the experimental methods reveals that the diode-forward voltage is the most accurate method (,,b 3 ,,aC). A theoretical model for the dependence of the diode junction voltage (Vj) on junction temperature (T) is developed that takes into account the temperature dependence of the energy gap. A thermal resistance of 87.6 K/W is obtained with the AlGaN/GaN LED sample mounted with thermal paste on a heat sink.
Proceedings of SPIE - The International Society for Optical Engineering
An AlGaN Light-emitting diode (LED) emitting with a peak wavelength at 291 nm and a radiant power of 0.5 mW @ 100 mA was fabricated on a sapphire substrate. A compact gated fluorescence detection system was built using this LED as the excitation light source. We demonstrate that it provides sufficient power using Terbium enhanced fluorescence to detect subnanomolar concentrations of dipicolinic acid (DPA, 2, 6-pyridinedicarboxylic acid), a substance uniquely present in bacterial spores such as that from B. anthracis, providing a basis for convenient early warning detectors. We also describe initial results from a novel approach for biological aerosol detection using long lived fluorescence from a Europium tagged dye that binds to proteins.
Proposed for publication in the Applied Physics Letters.
The junction temperature of AlGaN ultraviolet light-emitting diodes emitting at 295 nm is measured by using the temperature coefficients of the diode forward voltage and emission peak energy. The high-energy slope of the spectrum is explored to measure the carrier temperature. A linear relation between junction temperature and current is found. Analysis of the experimental methods reveals that the diode-forward voltage is the most accurate ({+-}3 C). A theoretical model for the dependence of the diode forward voltage (V{sub f}) on junction temperature (T{sub j}) is developed that takes into account the temperature dependence of the energy gap. A thermal resistance of 87.6 K/W is obtained with the device mounted with thermal paste on a heat sink.
Proposed for publication in Science.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of Crystal Growth.
Solid-state light sources emitting at wavelengths less than 300 nm would enable technological advances in many areas such as fluorescence-based biological agent detection, non-line-of-sight communications, water purification, and industrial processing including ink drying and epoxy curing. In this paper, we present our recent progress in the development of LEDs with emission between 237 and 297 nm. We will discuss growth and design issues of deep-UV LEDs, including transport in Si-doped AlGaN layers. The LEDs are designed for bottom emission so that improved heat sinking and light extraction can be achieved by flip chipping. To date, we have demonstrated 2.25 mW of output power at 295 nm from 1 mm x 1 mm LEDs operated at 500 mA. Shorter wavelength LEDs emitting at 276 nm have achieved an output power of 1.3 mW at 400 mA. The heterostructure designs that we have employed have suppressed deep level emission to intensities that are up to 330 x lower than the primary quantum well emission.
This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSL GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and breakthroughs, with Chapters 1-5 devoted to the five technical task areas: 1 Fundamental Materials Physics; 2 111-Nitride Growth Chemistry and Substrate Physics; 3 111-Nitride MOCVD Reactor Design and In-Situ Monitoring; 4 Advanced Light-Emitting Devices; and 5 Phosphors and Encapsulants. Chapter 7 (Appendix A) contains a listing of publications, presentations, and patents. Finally, the SSL GCLDRD resulted in numerous actual and pending follow-on programs for Sandia, including multiple grants from DOE and the Defense Advanced Research Projects Agency (DARPA), and Cooperative Research and Development Agreements (CRADAs) with SSL companies. Many of these follow-on programs arose out of contacts developed through our External Advisory Committee (EAC). In h s and other ways, the EAC played a very important role. Chapter 8 (Appendix B) contains the full (unedited) text of the EAC reviews that were held periodically during the course of the project.
Proposed for publication in the Journal of Crystal Growth.
Abstract not provided.
Proposed for publication in Semiconductor Science and Technology.
AlGaN/GaN test structures were fabricated with an etched constriction. A nitrogen plasma treatment was used to remove the disordered layer, including natural oxides on the AlGaN surface, before the growth of the silicon nitride passivation film on several of the test structures. A pulsed voltage input, with a 200 ns pulse width, and a four-point measurement were used in a 50 {Omega} environment to determine the room temperature velocity-field characteristic of the structures. The samples performed similarly over low fields, giving a low-field mobility of 545 cm{sup 2} V{sup -1} s{sup -1}. The surface treated sample performed slightly better at higher fields than the untreated sample. The highest velocity measured was 1.25 x 10{sup 7} cm s{sup -1} at a field of 26 kV cm{sup -1}.
The goal of this LDRD was to investigate III-antimonide/nitride based materials for unique semiconductor properties and applications. Previous to this study, lack of basic information concerning these alloys restricted their use in semiconductor devices. Long wavelength emission on GaAs substrates is of critical importance to telecommunication applications for cost reduction and integration into microsystems. Currently InGaAsN, on a GaAs substrate, is being commercially pursued for the important 1.3 micrometer dispersion minima of silica-glass optical fiber; due, in large part, to previous research at Sandia National Laboratories. However, InGaAsN has not shown great promise for 1.55 micrometer emission which is the low-loss window of single mode optical fiber used in transatlantic fiber. Other important applications for the antimonide/nitride based materials include the base junction of an HBT to reduce the operating voltage which is important for wireless communication links, and for improving the efficiency of a multijunction solar cell. We have undertaken the first comprehensive theoretical, experimental and device study of this material with promising results. Theoretical modeling has identified GaAsSbN to be a similar or potentially superior candidate to InGaAsN for long wavelength emission on GaAs. We have confirmed these predictions by producing emission out to 1.66 micrometers and have achieved edge emitting and VCSEL electroluminescence at 1.3 micrometers. We have also done the first study of the transport properties of this material including mobility, electron/hole mass, and exciton reduced mass. This study has increased the understanding of the III-antimonide/nitride materials enough to warrant consideration for all of the target device applications.
Abstract not provided.
Proposed for publication in Journal of Applied Physics.
Abstract not provided.
IEEE Journal of Quantum Electronics
The wavelength splitting between the LP01 and LP11 modes of selectively oxidized, ion implanted, and hybrid ion implanted/selectively oxidized vertical-cavity surface-emitting lasers is studied by experiment and theory. Measured splittings at threshold show marked differences between the different laser structures due to the effects of index guiding and thermal lensing. Theoretical results were obtained using a vector optical mode solver and show good agreement with experimental results. The hybrid lasers exhibited behavior intermediate between the ion implanted and selectively oxidized lasers and could be optimized for high power single transverse mode emission.
This report describes the research accomplishments achieved under the LDRD Project ''High-Bandwidth Optical Data Interconnects for Satellite Applications.'' The goal of this LDRD has been to address the future needs of focal-plane-array (FPA) sensors by exploring the use of high-bandwidth fiber-optic interconnects to transmit FPA signals within a satellite. We have focused primarily on vertical-cavity surface-emitting laser (VCSEL) based transmitters, due to the previously demonstrated immunity of VCSELs to total radiation doses up to 1 Mrad. In addition, VCSELs offer high modulation bandwidth (roughly 10 GHz), low power consumption (roughly 5 mW), and high coupling efficiency (greater than -3dB) to optical fibers. In the first year of this LDRD, we concentrated on the task of transmitting analog signals from a cryogenic FPA to a remote analog-to-digital converter. In the second year, we considered the transmission of digital signals produced by the analog-to-digital converter to a remote computer on the satellite. Specifically, we considered the situation in which the FPA, analog-to-digital converter, and VCSEL-based transmitter were all cooled to cryogenic temperatures. This situation requires VCSELs that operate at cryogenic temperature, dissipate minimal heat, and meet the electrical drive requirements in terms of voltage, current, and bandwidth.
Proposed for publication in Physical Review B.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We have used selective AlGaAs oxidation, dry-etching, and high-gain semiconductor laser simulation to create new in-plane lasers with interconnecting passive waveguides for use in high-density photonic circuits and future integration of photonics with electronics. Selective oxidation and doping of semiconductor heterostructures have made vertical cavity surface emitting lasers (VCSELs) into the world's most efficient low-power lasers. We apply oxidation technology to improve edge-emitting lasers and photonic-crystal waveguides, making them suitable for monolithic integrated microsystems. Two types of lasers are investigated: (1) a ridge laser with resonant coupling to an output waveguide; (2) a selectively-oxidized laser with a low active volume and potentially sub-milliAmp threshold current. Emphasis is on development of high-performance lasers suited for monolithic integration with photonic circuit elements.
Proceedings of SPIE - The International Society for Optical Engineering
InxGa1-xAs1-yNy quaternary alloys offer the promise of longer wavelength, ≥ 1.3 μm optical transceivers grown on GaAs substrates. To achieve acceptable radiative efficiencies at 1.3 μm, highly-strained InGaAsN quantum wells (x ≈ 0.4, y ≈ 0.005) are being developed as laser active regions. By introducing GaAsP layers into the active region for strain-compensation, gain can be increased using multiple InGaAsN quantum wells. In this work, we report the first strain-compensated, 1.3 μm InGaAsN MQW lasers. Our devices were grown by metal-organic chemical vapor deposition. Lasers with InGaAsN quantum well active regions are proving superior to lasers constructed with competing active region materials. Under pulsed operation, our 1.3 μm InGaAsN lasers displayed negligible blue-shift from the low-injection LED emission, and state-of-the-art characteristic temperature (159 K) was obtained for a 1.3 μm laser.
Conference Digest - IEEE International Semiconductor Laser Conference
Selectively oxidized vertical cavity surface emitting lasers (VCSEL) typically operate in multiple transverse optical modes. High power VCSEL operation is desirable for many applications such as optical storage and printing, modulation spectroscopy, bar code scanning, and data communication over single mode optical fiber. The modal discrimination can be augmented by creating a central region of gain surrounded by a region of optical loss. A VCSEL fabricated via hybrid ion implantation and selective oxidation device structure is designed to demonstrate a single mode output of more than 5 mW for 850 nm.