Publications

Results 1–200 of 318
Skip to search filters

Demonstration of >6.0-kV Breakdown Voltage in Large Area Vertical GaN p-n Diodes With Step-Etched Junction Termination Extensions

IEEE Transactions on Electron Devices

Yates, Luke Y.; Gunning, Brendan P.; Crawford, Mary H.; Steinfeldt, Jeffrey A.; Smith, Michael; Abate, Vincent M.; Dickerson, Jeramy R.; Armstrong, Andrew A.; Binder, Andrew B.; Allerman, A.A.; Kaplar, Robert K.

Vertical gallium nitride (GaN) p-n diodes have garnered significant interest for use in power electronics where high-voltage blocking and high-power efficiency are of concern. In this article, we detail the growth and fabrication methods used to develop a large area (1 mm2) vertical GaN p-n diode capable of a 6.0-kV breakdown. We also demonstrate a large area diode with a forward pulsed current of 3.5 A, an 8.3-mΩ$\cdot$cm2 differential specific ON-resistance, and a 5.3-kV reverse breakdown. In addition, we report on a smaller area diode (0.063 mm2) that is capable of 6.4-kV breakdown with a differential specific ON-resistance of 10.2 mΩ$\cdot$cm2, when accounting for current spreading through the drift region at a 45° angle. Finally, the demonstration of avalanche breakdown is shown for a 0.063-mm2 diode with a room temperature breakdown of 5.6 kV. In this work, these results were achieved via epitaxial growth of a 50-μm drift region with a very low carrier concentration of <1×1015 cm–3 and a carefully designed four-zone junction termination extension.

More Details

Recent Progress in Vertical Gallium Nitride Power Devices

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Dickerson, Jeramy R.; Binder, Andrew B.; Abate, Vincent M.; Smith, Michael; Pickrell, Gregory P.; Sharps, Paul; Neely, Jason C.; Rashkin, Lee; Gill, Lee G.; Goodrick, Kyle J.; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Hite, J H.; Ebrish, M.E.; Porter, M.A.; Zeng, K.Z.; Chowdhury, S.C.; Ji, D.J.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

High-Brightness Ultraviolet Lasers for Leap-Ahead National Security Applications

Skogen, Erik J.; Fortuna, S.A.; Allerman, A.A.; Smith, Michael; Alford, Charles A.; Crawford, Mary H.

In this project we endeavored to improve the state-of-the-art in UV lasers diodes. We made important advancements in several fronts from modeling, to epitaxial growth, to fabrication, and testing. Throughout the project it became clear that polarization doping would be able to help advance the state of laser diode design in terms of electrical performance, but the optical design would need to be investigated to ensure that a 2D guided mode would be supported. New capability in optical modeling using commercial software demonstrated that the new polarization doped structures would be viable. New capability in pulsed testing was established to reach the current and voltage required. Our fabricated devices had some parasitic electrical paths which hindered performance that we were ultimately unable to overcome in the project timeframe. We do believe that future projects will be able to leverage the advancements made under this project.

More Details

Development of Vertical GaN Power Devices for Use in Electric Vehicle Drivetrains (invited)

Kaplar, Robert K.; Binder, Andrew B.; Yates, Luke Y.; Allerman, A.A.; Crawford, Mary H.; Dickerson, Jeramy R.; Armstrong, Andrew A.; Glaser, Caleb E.; Steinfeldt, Bradley A.; Abate, Vincent M.; Pickrell, Gregory P.; Sharps, Paul; Flicker, Jack D.; Neely, Jason C.; Rashkin, Lee; Gill, Lee G.; Goodrick, Kyle J.; Monson, Todd M.; Bock, Jonathan A.; Subramania, Ganapathi S.; Scott, Ethan A.; Cooper, James A.

Abstract not provided.

Vertical GaN PN Diodes for Grid Resiliency and Medium-Voltage Power Electronics

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Dickerson, Jeramy R.; Binder, Andrew B.; Abate, Vincent M.; Smith, Michael L.; Pickrell, Gregory P.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.J.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Hite, J.H.; Ebrish, M.E.; Porter, M.A.; Zeng, K.Z.; Chowdhury, S.C.; Ji, D.J.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Vertical GaN Devices for Medium-Voltage Power Electronics

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Dickerson, Jeramy R.; Binder, Andrew B.; Abate, Vincent M.; Smith, Michael L.; Pickrell, Gregory P.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.J.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Hite, J.H.; Ebrish, M.E.; Porter, M.A.; Zeng, K.Z.; Chowdhury, S.C.; Ji, D.J.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Al0.7Ga0.3N MESFET with All-Refractory Metal Process for High Temperature Operation

IEEE Transactions on Electron Devices

Potts, Alexander M.; Bajaj, Sanyam; Daughton, David R.; Allerman, A.A.; Armstrong, Andrew A.; Razzak, Towhidur; Sohel, Shahadat H.; Rajan, Siddharth

Ultrawide bandgap Al0.7Ga0.3N MESFETs with refractory Tungsten Schottky and Ohmic contacts are studied in 300-675 K environments. Variable-temperature dc electrical transport reveals large ON-state drain current densities for an AlGaN device: 209 mA/mm at 300 K and 156 mA/mm at 675 K in the ON-state (25% reduction). Drain and gate currents are only weakly temperature-dependent, suggesting potential for engineering temperature invariant operation. The ON-/ OFF-ratio is limited by OFF-state leakage through the gate, which is attributed to damage from sputter deposition. Future work using refractory metals with larger work functions that are deposited by electron beam deposition is proposed.

More Details

High-resolution planar electron beam induced current in bulk diodes using high-energy electrons

Applied Physics Letters

Warecki, Zoey; Allerman, A.A.; Armstrong, Andrew A.; Talin, A.A.; Cumings, John

Understanding the impact of high-energy electron radiation on device characteristics remains critical for the expanding use of semiconductor electronics in space-borne applications and other radiation harsh environments. Here, we report on in situ measurements of high-energy electron radiation effects on the hole diffusion length in low threading dislocation density homoepitaxial bulk n-GaN Schottky diodes using electron beam induced current (EBIC) in high-voltage scanning electron microscopy mode. Despite the large interaction volume in this system, quantitative EBIC imaging is possible due to the sustained collimation of the incident electron beam. This approach enables direct measurement of electron radiation effects without having to thin the specimen. Using a combination of experimental EBIC measurements and Monte Carlo simulations of electron trajectories, we determine a hole diffusion length of 264 ± 11 nm for n-GaN. Irradiation with 200 kV electron beam with an accumulated dose of 24 × 1016 electrons cm−2 led to an approximate 35% decrease in the minority carrier diffusion length.

More Details

Ultra-Wide-Bandgap Semiconductors: Challenges and Opportunities (invited)

Kaplar, Robert K.; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Pickrell, Gregory P.; Dickerson, Jeramy R.; Flicker, Jack D.; Neely, Jason C.; Paisley, Elizabeth A.; Baca, Albert G.; Klein, Brianna A.; Douglas, Erica A.; Reza, Shahed R.; Binder, Andrew B.; Yates, Luke Y.; Slobodyan, Oleksiy S.; Sharps, Paul; Simmons, Jerry S.; Tsao, Jeffrey Y.; Hollis, Mark A.; Johnson, Noble J.; Jones, Ken J.; Pavlidis, Dimitris P.; Goretta, Ken G.; Nemanich, Bob N.; Goodnick, Steve G.; Chowdhury, Srabanti C.

Abstract not provided.

Carrier Diffusion Lengths in Continuously Grown and Etched-and-Regrown GaN Pin Diodes

IEEE Electron Device Letters

Celio, K.C.; Armstrong, Andrew A.; Talin, A.A.; Allerman, A.A.; Crawford, Mary H.; Pickrell, Gregory P.; Leonard, Francois L.

Advanced GaN power devices are promising for many applications in high power electronics but performance limitations due to material quality in etched-and-regrown junctions prevent their widespread use. Carrier diffusion length is a critical parameter that not only determines device performance but is also a diagnostic of material quality. Here we present the use of electron-beam induced current to measure carrier diffusion lengths in continuously grown and etched-and-regrown GaN pin diodes as models for interfaces in more complex devices. Variations in the quality of the etched-and-regrown junctions are observed and shown to be due to the degradation of the n-type material. We observe an etched-and-regrown junction with properties comparable to a continuously grown junction.

More Details

AlGaN High Electron Mobility Transistor for Power Switches and High Temperature Logic

Klein, Brianna A.; Armstrong, Andrew A.; Allerman, A.A.; Nordquist, Christopher N.; Neely, Jason C.; Reza, Shahed R.; Douglas, Erica A.; Van Heukelom, Michael V.; Rice, Anthony R.; Patel, Victor J.; Matins, Benjamin M.; Fortune, Torben R.; Rosprim, Mary R.; Caravello, Lisa N.; DeBerry, Rebecca N.; Pipkin, Jennifer R.; Abate, Vincent M.; Kaplar, Robert K.

Abstract not provided.

Vertical GaN Power Electronics - Opportunities and Challenges (invited)

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Dickerson, Jeramy R.; Binder, Andrew B.; Pickrell, Gregory P.; Sharps, Paul; Neely, Jason C.; Rashkin, Lee; Gill, L.G.; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; M., Porter M.; Martinez, R.M.; Zeng, K.Z.; Ji, D.J.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Analysis of ALD Dielectric Leakage in Bulk GaN MOS Devices

2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2021 - Proceedings

Glaser, Caleb E.; Binder, Andrew T.; Yates, Luke Y.; Allerman, A.A.; Feezell, Daniel F.; Kaplar, Robert K.

This study analyzes the ability of various processing techniques to reduce leakage current in vertical GaN MOS devices. Careful analysis is required to determine suitable gate dielectric materials in vertical GaN MOSFET devices since they are largely responsible for determination of threshold voltage, gate leakage reduction, and semiconductor/dielectric interface traps. SiO2, Al2 O3, and HfO2 films were deposited by Atomic Layer Deposition (ALD) and subjected to treatments nominally identical to those in a vertical GaN MOSFET fabrication sequence. This work determines mechanisms for reducing gate leakage by reduction of surface contaminants and interface traps using pre-deposition cleans, elevated temperature depositions, and post-deposition anneals. Breakdown measurements indicate that ALD Al2O3 is an ideal candidate for a MOSFET gate dielectric, with a breakdown electric field near 7.5 MV/cm with no high temperature annealing required to increase breakdown strength. SiO2 ALD films treated with a post deposition anneal at 850 °C for 30 minutes show significant reduction in leakage current while maintaining breakdown at 5.5 MV/cm. HfO2 films show breakdown nominally identical to annealed SiO2 films, but with significantly higher leakage. Additionally, HfO2 films show more sensitivity to high temperature annealing suggesting that more research into surface cleans is necessary to improving these films for MOSFET gate applications.

More Details

High-Al-content heterostructures and devices

Semiconductors and Semimetals

Kaplar, Robert K.; Baca, A.G.; Douglas, Erica A.; Klein, Brianna A.; Allerman, A.A.; Crawford, Mary H.; Reza, Shahed R.

Ultra-wide-bandgap aluminum gallium nitride (AlGaN) possesses several material properties that make it attractive for use in a variety of applications. This chapter focuses on power switching and radio-frequency (RF) devices based on Al-rich AlGaN heterostructures. The relevant figures of merit for both power switching and RF devices are discussed as motivation for the use of AlGaN heterostructures in such applications. The key physical parameters impacting these figures of merit include critical electric field, channel mobility, channel carrier density, and carrier saturation velocity, and the factors influencing these and the trade-offs between them are discussed. Surveys of both power switching and RF devices are given and their performance is described including in special operating regimes such as at high temperatures. Challenges to be overcome, such as the formation of low-resistivity Ohmic contacts, are presented. Finally, an overview of processing-related challenges, especially related to surfaces and interfaces, concludes the chapter.

More Details

Etched and Regrown Vertical GaN Junction Barrier Schottky Diodes

2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2021 - Proceedings

Binder, Andrew B.; Pickrell, Gregory P.; Allerman, A.A.; Dickerson, Jeramy R.; Yates, Luke Y.; Steinfeldt, Jeffrey A.; Glaser, Caleb E.; Crawford, Mary H.; Armstrong, Andrew A.; Sharps, Paul; Kaplar, Robert K.

This work provides the first demonstration of vertical GaN Junction Barrier Schottky (JBS) rectifiers fabricated by etch and regrowth of p-GaN. A reverse blocking voltage near 1500 V was achieved at 1 mA reverse leakage, with a sub 1 V turn-on and a specific on-resistance of 10 mΩ-cm2. This result is compared to other reported JBS devices in the literature and our device demonstrates the lowest leakage slope at high reverse bias. A large initial leakage current is present near zero-bias which is attributed to a combination of inadequate etch-damage removal and passivation induced leakage current.

More Details

Etched-and-Regrown GaN pn-Diodes with 1600 v Blocking Voltage

IEEE Journal of the Electron Devices Society

Armstrong, Andrew A.; Allerman, A.A.; Pickrell, Gregory P.; Crawford, Mary H.; Glaser, Caleb E.; Smith, Trevor S.

Etched-and-regrown GaN pn-diodes capable of high breakdown voltage (1610 V), low reverse current leakage (1 nA = 6 μ A /cm2 at 1250 V), excellent forward characteristics (ideality factor 1.6), and low specific on-resistance (1.1 m Ω.cm2) were realized by mitigating plasma etch-related defects at the regrown interface. Epitaxial n -GaN layers grown by metal-organic chemical vapor deposition on free-standing GaN substrates were etched using inductively coupled plasma etching (ICP), and we demonstrate that a slow reactive ion etch (RIE) prior to p -GaN regrowth dramatically increases diode electrical performance compared to wet chemical surface treatments. Etched-and-regrown diodes without a junction termination extension (JTE) were characterized to compare diode performance using the post-ICP RIE method with prior studies of other post-ICP treatments. Then, etched-and-regrown diodes using the post-ICP RIE etch steps prior to regrowth were fabricated with a multi-step JTE to demonstrate kV-class operation.

More Details

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert K.; Gunning, Brendan P.; Allerman, A.A.; Crawford, Mary H.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Binder, Andrew B.; Dickerson, Jeramy R.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; Parter, M.P.; Zeng, K.Z.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert K.; Gunning, Brendan P.; Allerman, A.A.; Crawford, Mary H.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Binder, Andrew B.; Dickerson, Jeramy R.; Pickrell, Gregory P.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; Porter, M.A.; Martinez, R.M.; Zeng, K.Z.; Ji, D.J.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Synchrotron X-ray topography characterization of high quality ammonothermal-grown gallium nitride substrates

Journal of Crystal Growth

Liu, Yafei; Raghothamachar, Balaji; Peng, Hongyu; Ailihumaer, Tuerxun; Dudley, Michael; Collazo, Ramon; Tweedie, James; Sitar, Zlatko; Shadi Shahedipour-Sandvik, F.; Jones, Kenneth A.; Armstrong, Andrew A.; Allerman, A.A.; Grabianska, Karolina; Kucharski, Robert; Bockowski, Michal

Ammonothermal growth of bulk gallium nitride (GaN) crystals is considered the most suitable method to meet the demand for high quality bulk substrates for power electronics. A non-destructive evaluation of defect content in state-of-the-art ammonothermal substrates has been carried out by synchrotron X-ray topography. Using a monochromatic beam in grazing incidence geometry, high resolution X-ray topographs reveal the various dislocation types present. Ray-tracing simulations that were modified to take both surface relaxation and absorption effects into account allowed improved correlation with observed dislocation contrast so that the Burgers vectors of the dislocations could be determined. The images show the very high quality of the ammonothermal GaN substrate wafers which contain low densities of threading dislocations (TDs) but are free of basal plane dislocations (BPDs). Threading mixed dislocations (TMDs) were found to be dominant among the TDs, and the overall TD density (TDD) of a 1-inch wafer was found to be as low as 5.16 × 103 cm−2.

More Details

Defect suppression in wet-treated etched-and-regrown nonpolar m -plane GaN vertical Schottky diodes: A deep-level optical spectroscopy analysis

Journal of Applied Physics

Aragon, Andrew; Monavarian, Morteza; Pickrell, Gregory P.; Crawford, Mary H.; Allerman, A.A.; Feezell, Daniel; Armstrong, Andrew A.

Steady-state photocapacitance (SSPC) was conducted on nonpolar m-plane GaN n-type Schottky diodes to evaluate the defects induced by inductively coupled plasma (ICP) dry etching in etched-and-regrown unipolar structures. An ∼10× increase in the near-midgap Ec - 1.9 eV level compared to an as-grown material was observed. Defect levels associated with regrowth without an etch were also investigated. The defects in the regrown structure (without an etch) are highly spatially localized to the regrowth interface. Subsequently, by depth profiling an etched-and-regrown sample, we show that the intensities of the defect-related SSPC features associated with dry etching depend strongly on the depth away from the regrowth interface, which is also reported previously [Nedy et al., Semicond. Sci. Technol. 30, 085019 (2015); Fang et al., Jpn. J. Appl. Phys. 42, 4207-4212 (2003); and Cao et al., IEEE Trans. Electron Devices 47, 1320-1324 (2000)]. A photoelectrochemical etching (PEC) method and a wet AZ400K treatment are also introduced to reduce the etch-induced deep levels. A significant reduction in the density of deep levels is observed in the sample that was treated with PEC etching after dry etching and prior to regrowth. An ∼2× reduction in the density of Ec - 1.9 eV level compared to a reference etched-and-regrown structure was observed upon the application of PEC etching treatment prior to the regrowth. The PEC etching method is promising for reducing defects in selective-area doping for vertical power switching structures with complex geometries [Meyers et al., J. Electron. Mater. 49, 3481-3489 (2020)].

More Details

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Binder, Andrew B.; Dickerson, Jeramy R.; Pickrell, Gregory P.; Sharps, Paul; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; Porter, M.A.; Martinez, R.M.; Zeng, K.Z.; Ji, D.J.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

Device-Level Multidimensional Thermal Dynamics with Implications for Current and Future Wide Bandgap Electronics

Journal of Electronic Packaging, Transactions of the ASME

Lundh, James S.; Song, Yiwen; Chatterjee, Bikramjit; Baca, A.G.; Kaplar, Robert K.; Armstrong, Andrew A.; Allerman, A.A.; Klein, Brianna A.; Kendig, Dustin; Kim, Hyungtak; Choi, Sukwon

Researchers have been extensively studying wide-bandgap (WBG) semiconductor materials such as gallium nitride (GaN) with an aim to accomplish an improvement in size, weight, and power of power electronics beyond current devices based on silicon (Si). However, the increased operating power densities and reduced areal footprints of WBG device technologies result in significant levels of self-heating that can ultimately restrict device operation through performance degradation, reliability issues, and failure. Typically, self-heating in WBG devices is studied using a single measurement technique while operating the device under steady-state direct current measurement conditions. However, for switching applications, this steady-state thermal characterization may lose significance since the high power dissipation occurs during fast transient switching events. Therefore, it can be useful to probe the WBG devices under transient measurement conditions in order to better understand the thermal dynamics of these systems in practical applications. In this work, the transient thermal dynamics of an AlGaN/GaN high electron mobility transistor (HEMT) were studied using thermoreflectance thermal imaging and Raman thermometry. Also, the proper use of iterative pulsed measurement schemes such as thermoreflectance thermal imaging to determine the steady-state operating temperature of devices is discussed. These studies are followed with subsequent transient thermal characterization to accurately probe the self-heating from steady-state down to submicrosecond pulse conditions using both thermoreflectance thermal imaging and Raman thermometry with temporal resolutions down to 15 ns.

More Details

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert K.; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke Y.; Binder, Andrew B.; Dickerson, Jeramy R.; Pickrell, Gregory P.; Anderson, T.J.; Gallagher, J.C.; Jacobs, A.G.; Koehler, A.D.; Tadjer, M.J.; Hobart, K.D.; Ebrish, M.E.; Porter, M.A.; Martinez, R.M.; Zeng, K.Z.; Ji, D.J.; Chowdhury, S.C.; Aktas, O.A.; Cooper, J.A.

Abstract not provided.

X-ray topography characterization of gallium nitride substrates for power device development

Journal of Crystal Growth

Raghothamachar, Balaji; Liu, Yafei; Peng, Hongyu; Ailihumaer, Tuerxun; Dudley, Michael; Shahedipour-Sandvik, F.S.; Jones, Kenneth A.; Armstrong, Andrew A.; Allerman, A.A.; Han, Jung; Fu, Houqiang; Fu, Kai; Zhao, Yuji

Gallium nitride substrates grown by the hydride vapor phase epitaxy (HVPE) method using a patterned growth process have been characterized by synchrotron monochromatic beam X-ray topography in the grazing incidence geometry. Images reveal a starkly heterogeneous distribution of dislocations with areas as large as 0.3 mm2 containing threading dislocation densities below 103 cm−2 in between a grid of strain centers with higher threading dislocation densities (>104 cm−2). Basal plane dislocation densities in these areas are as low as 104 cm−2. By comparing the recorded images of dislocations with ray tracing simulations of expected dislocations in GaN, the Burgers vectors of the dislocations have been determined. The distribution of threading screw/mixed dislocations (TSDs/TMDs), threading edge dislocations (TEDs) and basal plane dislocations (BPDs) is discussed with implications for fabrication of power devices.

More Details

High temperature operation to 500 °c of AlGaN graded polarization-doped field-effect transistors

Journal of Vacuum Science and Technology B

Carey, Patrick H.; Ren, Fan; Armstrong, Andrew A.; Klein, Brianna A.; Allerman, A.A.; Douglas, Erica A.; Baca, A.G.; Pearton, Stephen J.

AlGaN polarization-doped field-effect transistors were characterized by DC and pulsed measurements from room temperature to 500 °C in ambient. DC current-voltage characteristics demonstrated only a 70% reduction in on-state current from 25 to 500 °C and full gate modulation, regardless of the operating temperature. Near ideal gate lag measurement was realized across the temperature range that is indicative of a high-quality substrate and sufficient surface passivation. The ability for operation at high temperature is enabled by the high Schottky barrier height from the Ni/Au gate contact, with values of 2.05 and 2.76 eV at 25 and 500 °C, respectively. The high barrier height due to the insulatorlike aluminum nitride layer leads to an ION/IOFF ratio of 1.5 × 109 and 6 × 103 at room temperature and 500 °C, respectively. Transmission electron microscopy was used to confirm the stability of the heterostructure even after an extended high-temperature operation with only minor interdiffusion of the Ni/Au Schottky contact. The use of refractory metals in all contacts will be key to ensure a stable extended high-temperature operation.

More Details

Al-rich AlGaN based transistors

Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films

Baca, A.G.; Armstrong, Andrew A.; Klein, Brianna A.; Allerman, A.A.; Douglas, Erica A.; Kaplar, Robert J.

Research results for AlGaN-channel transistors are reviewed as they have progressed from low Al-content and long-channel devices to Al-rich and short-channel RF devices. Figure of merit (FOM) analysis shows encouraging comparisons relative to today's state-of-the-art GaN devices for high Al-content and elevated temperatures. Critical electric field (EC), which fuels the AlGaN transistor FOM for high Al-composition, is not measured directly, but average gate-drain electric field at breakdown is substantially better in multiple reported AlGaN-channel devices compared to GaN. Challenges for AlGaN include the constraints arising from relatively low room temperature mobility dominated by ternary alloy scattering and the difficulty of making low-resistivity Ohmic contacts to high Al-content materials. Nevertheless, considerable progress has been made recently in the formation of low-resistivity Ohmic contacts to Al-rich AlGaN by using reverse compositional grading in the semiconductor, whereby a contact to a lower-Al alloy (or even to GaN) is made. Specific contact resistivity (ρc) approaching ρc ∼2 × 10-6ωcm2 to AlGaN devices with 70% Al-content in the channel has been reported. Along with scaling of the channel length and tailoring of the threshold voltage, this has enabled a dramatic increase in the current density, which has now reached 0.6 A/mm. Excellent ION/IOFF current ratios have been reported for Schottky-gated structures, in some cases exceeding 109. Encouraging RF performance in Al-rich transistors has been reported as well, with fT and fmax demonstrated in the tens of gigahertz range for devices with less than 150 nm gates. Al-rich transistors have also shown lesser current degradation over temperature than GaN in extreme high-temperature environments up to 500 °C, while maintaining ION/IOFF ratios of ∼106 at 500 °C. Finally, enhancement-mode devices along with initial reliability and radiation results have been reported for Al-rich AlGaN transistors. The Al-rich transistors promise to be a very broad and exciting field with much more progress expected in the coming years as this technology matures.

More Details

High voltage GaN p-n diodes formed by selective area regrowth

Electronics Letters

Armstrong, Andrew A.; Pickrell, Gregory P.; Allerman, A.A.; Crawford, Mary H.; Glaser, Caleb E.; Smith, Trevor S.; Abate, Vincent M.

GaN p-n diodes were formed by selective area regrowth on freestanding GaN substrates using a dry etch, followed by post-etch surface treatment to reduce etch-induced defects, and subsequent regrowth into wells. Etched-and-regrown diodes with a 150 μm diameter achieved 840 V operation at 0.5 A/cm2 reverse current leakage and a specific on-resistance of 1.2 mΩ·cm2. Etched-and-regrown diodes were compared with planar, regrown diodes without etching on the same wafer. Both types of diodes exhibited similar forward and reverse electrical characteristics, which indicate that etch-induced defectivity of the junction was sufficiently mitigated so as not to be the primary cause for leakage. An area dependence for forward and reverse leakage current density was observed, suggesting that the mesa sidewall provided a leakage path.

More Details

Interfacial Impurities and Their Electronic Signatures in High-Voltage Regrown Nonpolar m-Plane GaN Vertical p–n Diodes

Physica Status Solidi. A, Applications and Materials Science

Aragon, Andrew A.; Monavarian, Morteza M.; Stricklin, Isaac S.; Pickrell, Gregory P.; Crawford, Mary H.; Allerman, A.A.; Armstrong, Andrew A.; Feezell, Daniel F.

Impacts of silicon, carbon, and oxygen interfacial impurities on the performance of high-voltage vertical GaN-based p–n diodes are investigated. The results indicate that moderate levels (≈5 × 1017 cm-3) of all interfacial impurities lead to reverse blocking voltages (Vb) greater than 200 V at 1 μA cm-2 and forward leakage of less than 1 µA cm-2 at 1.7 V. At higher interfacial impurity levels, the performance of the diodes becomes compromised. Herein, it is concluded that each impurity has a different effect on the device performance. For example, a high carbon spike at the junction correlates with high off-state leakage current in forward bias (≈100× higher forward leakage current compared with a reference diode), whereas the reverse bias behavior is not severely affected (> 200 V at 1 μA cm-2). High silicon and oxygen spikes at the junction strongly affect the reverse leakage currents (≈ 1–10 V at 1 μA cm-2). Regrown diodes with impurity (silicon, oxygen, and carbon) levels below 5 × 1017 cm-3 show comparable forward and reverse results with the reference continuously grown diodes. The effect of the regrowth interface position relative to the metallurgical junction on the diode performance is also discussed.

More Details

Investigation of dry-etch-induced defects in >600 v regrown, vertical, GaN, p-n diodes using deep-level optical spectroscopy

Journal of Applied Physics

Pickrell, Gregory P.; Armstrong, Andrew A.; Allerman, A.A.; Crawford, Mary H.; Glaser, Caleb E.; Kempisty, J.; Abate, Vincent M.

The impact of dry-etch-induced defects on the electrical performance of regrown, c-plane, GaN p-n diodes where the p-GaN layer is formed by epitaxial regrowth using metal-organic, chemical-vapor deposition was investigated. Diode leakage increased significantly for etched-and-regrown diodes compared to continuously grown diodes, suggesting a defect-mediated leakage mechanism. Deep level optical spectroscopy (DLOS) techniques were used to identify energy levels and densities of defect states to understand etch-induced damage in regrown devices. DLOS results showed the creation of an emergent, mid-gap defect state at 1.90 eV below the conduction band edge for etched-and-regrown diodes. Reduction in both the reverse leakage and the concentration of the 1.90 eV mid-gap state was achieved using a wet chemical treatment on the etched surface before regrowth, suggesting that the 1.90 eV deep level contributes to increased leakage and premature breakdown but can be mitigated with proper post-etch treatments to achieve >600 V reverse breakdown operation.

More Details

Bevel edge termination for vertical GaN power diodes

2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2019

Binder, Andrew B.; Dickerson, Jeramy R.; Crawford, Mary H.; Pickrell, Gregory P.; Allerman, A.A.; Sharps, Paul; Kaplar, Robert K.

Edge termination for vertical power devices presents a significant challenge, as improper termination can result in devices with a breakdown voltage significantly less than the ideal infinite-planar case. Edge termination for vertical GaN devices is particularly challenging due to limitations in ion implantation for GaN, and as such this work investigates a bevel edge termination technique that does not require implantation and has proven to be effective for Si and SiC power devices. However, due to key differences between GaN versus Si and SiC p-n junctions (specifically, a grown versus an implanted junction), this technology needs to be reevaluated for GaN. Simulation results suggest that by leveraging the effective bevel angle relationship, a 10-15° physical bevel angle can yield devices with 85-90% of the ideal breakdown voltage. Results are presented for a negative bevel edge termination on an ideally 2 kV vertical GaN p-n diode.

More Details

Saturation Velocity Measurement of Al0.7Ga0.3N-Channel High Electron Mobility Transistors

Journal of Electronic Materials

Klein, Brianna A.; Baca, A.G.; Lepkowski, Stefan M.; Nordquist, Christopher N.; Wendt, J.R.; Allerman, A.A.; Armstrong, Andrew A.; Douglas, Erica A.; Abate, Vincent M.; Kaplar, Robert K.

Gate length dependent (80 nm–5000 mm) radio frequency measurements to extract saturation velocity are reported for Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistors fabricated into radio frequency devices using electron beam lithography. Direct current characterization revealed the threshold voltage shifting positively with increasing gate length, with devices changing from depletion mode to enhancement mode when the gate length was greater than or equal to 450 nm. Transconductance varied from 10 mS/mm to 25 mS/mm, with the 450 nm device having the highest values. Maximum drain current density was 268 mA/mm at 10 V gate bias. Scattering-parameter characterization revealed a maximum unity gain bandwidth (fT) of 28 GHz, achieved by the 80 nm gate length device. A saturation velocity value of 3.8 × 106 cm/s, or 35% of the maximum saturation velocity reported for GaN, was extracted from the fT measurements.

More Details

Visible- and solar-blind photodetectors using AlGaN high electron mobility transistors with a nanodot-based floating gate

Photonics Research

Armstrong, Andrew A.; Klein, Brianna A.; Allerman, A.A.; Baca, A.G.; Crawford, Mary H.; Podkaminer, Jacob; Perez, Carlos P.; Siegal, Michael P.; Douglas, Erica A.; Abate, Vincent M.; Leonard, Francois L.

AlGaN-channel high electron mobility transistors (HEMTs) were operated as visible- and solar-blind photodetectors by using GaN nanodots as an optically active floating gate. The effect of the floating gate was large enough to switch an HEMT from the off-state in the dark to an on-state under illumination. This opto-electronic response achieved responsivity > 108 A/W at room temperature while allowing HEMTs to be electrically biased in the offstate for low dark current and low DC power dissipation. The influence of GaN nanodot distance from the HEMT channel on the dynamic range of the photodetector was investigated, along with the responsivity and temporal response of the floating gate HEMT as a function of optical intensity. The absorption threshold was shown to be controlled by the AlN mole fraction of the HEMT channel layer, thus enabling the same device design to be tuned for either visible- or solar-blind detection.

More Details

Stability in Fluorine-Treated Al-Rich High Electron Mobility Transistors with 85% Al-Barrier Composition

IEEE International Reliability Physics Symposium Proceedings

Baca, A.G.; Klein, B.A.; Armstrong, Andrew A.; Allerman, A.A.; Douglas, Erica A.; Fortune, Torben R.; Kaplar, Robert K.

Combined with recess etching, Al-rich III-N high electron mobility transistors (HEMTs) can be treated with a reactive ion etch plasma to implant F- ions into the HEMT's near surface region for a positive threshold voltage $(V-{TH})$ shift to achieve enhancement-mode (e-mode) operation. These HEMTs, along with depletion-mode (d-mode) controls that lack fluorine treatment, were evaluated for F- ion stability using step-stress and fixed-bias stress experiments. Step-stress experiments identified parametric shifts as a function of the drain-voltage $(V-{DS})$ stress prior to catastrophic failure that occurred at ${\it V-{DS}}$ ranging between 70-75 V. Fixed bias stressing at $V-{DS}=50\mathrm{V}$ was conducted at $190\ ^{\circ}\mathrm{C}$ Both e- and d- mode HEMTs exhibited a negative $V-{TH}$ shift of $0.6-1.0 \mathrm{V}$ during early time stressing at 190°C, with minor on-resistance effects, but both HEMT types were thereafter stable up to 4 hours. The early time changes are common to both e-mode and d-mode HEMTs and the F-induced ${\it V-{TH}}$ delta between e- and d-mode HEMTs remains intact within the bias-temperature stressing conditions of this work.

More Details

Enhancement-mode Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistor with fluorine treatment

Applied Physics Letters

Klein, Brianna A.; Douglas, Erica A.; Armstrong, Andrew A.; Allerman, A.A.; Abate, Vincent M.; Fortune, Torben R.; Baca, A.G.

Enhancement-mode Al0.7Ga0.3N-channel high electron mobility transistors (HEMTs) were achieved through a combination of recessed etching and fluorine ion deposition to shift the threshold voltage (VTH) relative to depletion-mode devices by +5.6 V to VTH = +0.5 V. Accounting for the threshold voltage shift (ΔVTH), current densities of approximately 30 to 35 mA/mm and transconductance values of 13 mS/mm were achieved for both the control and enhancement mode devices at gate biases of 1 V and 6.6 V, respectively. Little hysteresis was observed for all devices, with voltage offsets of 20 mV at drain currents of 1.0 × 10-3mA/mm. Enhancement-mode devices exhibited slightly higher turn-on voltages (+0.38 V) for forward bias gate currents. Piecewise evaluation of a threshold voltage model indicated a ΔVTH of +3.3 V due to a gate recess etching of 12 nm and an additional +2.3 V shift due to fluorine ions near the AlGaN surface.

More Details

Enhancement-mode AlGaN channel high electron mobility transistor enabled by p-AlGaN gate

Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics

Douglas, Erica A.; Klein, Brianna A.; Allerman, A.A.; Baca, A.G.; Fortune, Torben R.; Armstrong, Andrew A.

This work exhibits the ability to shift the threshold voltage of an Al0.45Ga0.55N/Al0.3Ga0.7N high electron mobility transistor through the implementation of a 100 nm thick p-Al0.3Ga0.7N gate. A maximum threshold voltage of +0.3 V was achieved with a 3 μm gate length. In addition to achieving enhancement-mode operation, this work also shows the capability to obtain high saturated drain current (>50 mA/mm), no gate hysteresis, high ION,MAX/IOFF,MIN ratio of >109, and exceptionally low gate leakage current of 10-6 mA/mm even under high forward bias of Vgs = 8 V.

More Details

RF Performance of Al0.85Ga0.15N/Al0.70Ga0.30N high electron mobility transistors with 80-nm Gates

IEEE Electron Device Letters

Baca, A.G.; Klein, Brianna A.; Wendt, J.R.; Lepkowski, Stefan M.; Nordquist, Christopher N.; Armstrong, Andrew A.; Allerman, A.A.; Douglas, Erica A.; Kaplar, Robert K.

Al-rich AlGaN-channel high electron mobility transistors with 80-nm long gates and 85% (70%) Al in the barrier (channel) were evaluated for RF performance. The dc characteristics include a maximum current of 160 mA/mm with a transconductance of 24 mS/mm, limited by source and drain contacts, and an on/off current ratio of 109. fT of 28.4 GHz and fMAX of 18.5 GHz were determined from small-signal S-parameter measurements. Output power density of 0.38 W/mm was realized at 3 GHz in a power sweep using on-wafer load pull techniques.

More Details

Integrated optical probing of the thermal dynamics of wide bandgap power electronics

ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2019

Lundh, James S.; Song, Yiwen; Chatterjee, Bikram; Baca, A.G.; Kaplar, Robert K.; Armstrong, Andrew A.; Allerman, A.A.; Kim, Hyungtak; Choi, Sukwon

Researchers have been extensively studying wide-bandgap (WBG) semiconductor materials such as gallium nitride (GaN) with an aim to accomplish an improvement in size, weight, and power (SWaP) of power electronics beyond current devices based on silicon (Si). However, the increased operating power densities and reduced areal footprints of WBG device technologies result in significant levels of self-heating that can ultimately restrict device operation through performance degradation, reliability issues, and failure. Typically, self-heating in WBG devices is studied using a single measurement technique while operating the device under steady-state direct current (DC) measurement conditions. However, for switching applications, this steady-state thermal characterization may lose significance since high power dissipation occurs during fast transient switching events. Therefore, it can be useful to probe the WBG devices under transient measurement conditions in order to better understand the thermal dynamics of these systems in practical applications. In this work, the transient thermal dynamics of an AlGaN/GaN high electron mobility transistor (HEMT) were studied using thermoreflectance thermal imaging and Raman thermometry. Also, the proper use of iterative pulsed measurement schemes such as thermoreflectance thermal imaging to determine the steady-state operating temperature of devices is discussed. These studies are followed with subsequent transient thermal characterization to accurately probe the self-heating from steady-state down to sub-microsecond pulse conditions using both thermoreflectance thermal imaging and Raman thermometry with temporal resolutions down to 15 ns.

More Details

TCAD simulation of a 1 kV 10 A GaN MISFET Device

Dickerson, Jeramy R.; Dickerson, Jeramy R.; Dickerson, Jeramy R.; Dickerson, Jeramy R.; Kaplar, Robert K.; Kaplar, Robert K.; Kaplar, Robert K.; Kaplar, Robert K.; Tauke-Pedretti, Anna; Tauke-Pedretti, Anna; Tauke-Pedretti, Anna; Tauke-Pedretti, Anna; Armstrong, Andrew A.; Armstrong, Andrew A.; Armstrong, Andrew A.; Armstrong, Andrew A.; Crawford, Mary H.; Crawford, Mary H.; Crawford, Mary H.; Crawford, Mary H.; Allerman, A.A.; Allerman, A.A.; Allerman, A.A.; Allerman, A.A.; Pickrell, Gregory P.; Pickrell, Gregory P.; Pickrell, Gregory P.; Pickrell, Gregory P.

Abstract not provided.

Investigation of interfacial impurities in m-plane GaN regrown p-n junctions for high-power vertical electronic devices

Proceedings of SPIE - The International Society for Optical Engineering

Stricklin, Isaac; Monavarian, Morteza; Aragon, Andrew; Pickrell, Gregory P.; Crawford, Mary H.; Allerman, A.A.; Armstrong, Andrew A.; Feezell, Daniel

GaN is an attractive material for high-power electronics due to its wide bandgap and large breakdown field. Verticalgeometry devices are of interest due to their high blocking voltage and small form factor. One challenge for realizing complex vertical devices is the regrowth of low-leakage-current p-n junctions within selectively defined regions of the wafer. Presently, regrown p-n junctions exhibit higher leakage current than continuously grown p-n junctions, possibly due to impurity incorporation at the regrowth interfaces, which consist of c-plane and non-basal planes. Here, we study the interfacial impurity incorporation induced by various growth interruptions and regrowth conditions on m-plane p-n junctions on free-standing GaN substrates. The following interruption types were investigated: (1) sample in the main MOCVD chamber for 10 min, (2) sample in the MOCVD load lock for 10 min, (3) sample outside the MOCVD for 10 min, and (4) sample outside the MOCVD for one week. Regrowth after the interruptions was performed on two different samples under n-GaN and p-GaN growth conditions, respectively. Secondary ion mass spectrometry (SIMS) analysis indicated interfacial silicon spikes with concentrations ranging from 5e16 cm-3 to 2e18 cm-3 for the n-GaN growth conditions and 2e16 cm-3 to 5e18 cm-3 for the p-GaN growth conditions. Oxygen spikes with concentrations ∼1e17 cm-3 were observed at the regrowth interfaces. Carbon impurity levels did not spike at the regrowth interfaces under either set of growth conditions. We have correlated the effects of these interfacial impurities with the reverse leakage current and breakdown voltage of regrown m-plane p-n junctions.

More Details

Al0.85Ga0.15N/Al0.70Ga0.30N High Electron Mobility Transistors with Schottky Gates and Large On/Off Current Ratio over Temperature

ECS Journal of Solid State Science and Technology

Baca, A.G.; Klein, Brianna A.; Allerman, A.A.; Armstrong, Andrew A.; Douglas, Erica A.; Stephenson, Chad A.; Fortune, Torben R.; Kaplar, Robert K.

AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that are promising candidates for RF and power applications. Long-channel AlxGa1-xN HEMTs with x = 0.7 in the channel have been built and evaluated across the -50°C to +200°C temperature range. These devices achieved room temperature drain current as high as 46 mA/mm and were absent of gate leakage until the gate diode forward bias turn-on at ~2.8 V, with a modest -2.2 V threshold voltage. A very large Ion/Ioff current ratio, of 8 × 109 was demonstrated. A near ideal subthreshold slope that is just 35% higher than the theoretical limit across the temperature range was characterized. The ohmic contact characteristics were rectifying from -50°C to +50°C and became nearly linear at temperatures above 100°C. An activation energy of 0.55 eV dictates the temperature dependence of off-state leakage.

More Details

Planar Ohmic Contacts to Al 0.45 Ga 0.55 N/Al 0.3 Ga 0.7 N High Electron Mobility Transistors

ECS Journal of Solid State Science and Technology

Klein, Brianna A.; Baca, A.G.; Armstrong, Andrew A.; Allerman, A.A.; Sanchez, Carlos A.; Douglas, Erica A.; Crawford, Mary H.; Miller, Mary A.; Kotula, Paul G.; Fortune, Torben R.; Abate, Vincent M.

Here, we present a low resistance, straightforward planar ohmic contact for Al0.45Ga0.55N/Al0.3Ga0.7N high electron mobility transistors. Five metal stacks (a/Al/b/Au; a = Ti, Zr, V, Nb/Ti; b = Ni, Mo, V) were evaluated at three individual annealing temperatures (850, 900, and 950°C). The Ti/Al/Ni/Au achieved the lowest specific contact resistance at a 900°C anneal temperature. Transmission electron microscopy analysis revealed a metal-semiconductor interface of Ti-Al-Au for an ohmic (900°C anneal) and a Schottky (850°C anneal) Ti/Al/Ni/Au stack. HEMTs were fabricated using the optimized recipe with resulting contacts that had room-temperature specific contact resistances of ρc = 2.5 × 10-5 Ω cm², sheet resistances of RSH = 3.9 kΩ/$\blacksquare$, and maximum current densities of 75 mA/mm (at VGATE of 2 V). Electrical measurements from -50 to 200°C had decreasing specific contact resistance and increasing sheet resistance, with increasing temperature. These contacts enabled state-of-the-art performance of Al0.45Ga0.55N/Al0.3Ga0.7N HEMTs.

More Details

Ohmic contacts to Al-rich AlGaN heterostructures

Physica Status Solidi (A) Applications and Materials Science

Douglas, Erica A.; Reza, Shahed R.; Sanchez, C.; Koleske, Daniel K.; Allerman, A.A.; Klein, B.; Armstrong, Andrew A.; Kaplar, Robert K.; Baca, A.G.

Due to the ultra-wide bandgap of Al-rich AlGaN, up to 5.8 eV for the structures in this study, obtaining low resistance ohmic contacts is inherently difficult to achieve. A comparative study of three different fabrication schemes is presented for obtaining ohmic contacts to an Al-rich AlGaN channel. Schottky-like behavior was observed for several different planar metallization stacks (and anneal temperatures), in addition to a dry-etch recess metallization contact scheme on Al0.85Ga0.15N/Al0.66Ga0.34N. However, a dry etch recess followed by n+-GaN regrowth fabrication process is reported as a means to obtain lower contact resistivity ohmic contacts on a Al0.85Ga0.15N/Al0.66Ga0.34N heterostructure. Specific contact resistivity of 5 × 10−3 Ω cm2 was achieved after annealing Ti/Al/Ni/Au metallization.

More Details

High Temperature Operation of Al0.45Ga0.55N/Al0.30Ga0.70 N High Electron Mobility Transistors

ECS Journal of Solid State Science and Technology

Baca, A.G.; Armstrong, Andrew A.; Allerman, A.A.; Klein, Brianna A.; Douglas, Erica A.; Sanchez, Carlos A.; Fortune, Torben R.

AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel AlxGa1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large Ion/Ioff current ratio, greater than 108 was demonstrated over the entire temperature range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.

More Details

Evolution of AlGaN deep level defects as a function of alloying and compositional grading and resultant impact on electrical conductivity

Applied Physics Letters

Armstrong, Andrew A.; Allerman, A.A.

AlGaN:Si epilayers with uniform Al compositions of 60%, 70%, 80%, and 90% were grown by metal-organic vapor phase epitaxy along with a compositionally graded, unintentionally doped (UID) AlGaN epilayer with the Al composition varying linearly between 80% and 100%. The resistivity of AlGaN:Si with a uniform composition increased significantly for the Al content of 80% and greater, whereas the graded UID-AlGaN film exhibited resistivity equivalent to 60% and 70% AlGaN:Si owing to polarization-induced doping. Deep level defect studies of both types of AlGaN epilayers were performed to determine why the electronic properties of uniform-composition AlGaN:Si degraded with increased Al content, while the electronic properties of graded UID-AlGaN did not. The deep level density of uniform-composition AlGaN:Si increased monotonically and significantly with the Al mole fraction. Conversely, graded-UID AlGaN had the lowest deep level density of all the epilayers despite containing the highest Al composition. These findings indicate that Si doping is an impetus for point defect incorporation in AlGaN that becomes stronger with the increasing Al content. However, the increase in deep level density with the Al content in uniform-composition AlGaN:Si was small compared to the increase in resistivity. This implies that the primary cause for increasing resistivity in AlGaN:Si with the increasing Al mole fraction is not compensation by deep levels but rather increasing activation energy for the Si dopant. The graded UID-AlGaN films maintained low resistivity because they do not rely on thermal ionization of Si dopants.

More Details

Imaging the impact of proton irradiation on edge terminations in vertical GaN PIN diodes

IEEE Electron Device Letters

Collins, K.C.; King, M.P.; Dickerson, Jeramy R.; Vizkelethy, Gyorgy V.; Armstrong, Andrew A.; Fischer, Arthur J.; Allerman, A.A.; Kaplar, Robert K.; Aktas, O.; Kizilyalli, I.C.; Talin, A.A.; Léonard, F.

Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination tomitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN PIN diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences field spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.

More Details

Phase degradation in BxGa1−xN films grown at low temperature by metalorganic vapor phase epitaxy

Journal of Crystal Growth

Gunning, Brendan P.; Moseley, Michael; Koleske, Daniel K.; Allerman, A.A.; Lee, Stephen R.

Using metalorganic vapor phase epitaxy, a comprehensive study of BxGa1−xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750–900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to ~7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stacking faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at ~362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. Only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.

More Details

Review - Ultra-wide-bandgap AlGaN power electronic devices

ECS Journal of Solid State Science and Technology

Kaplar, Robert K.; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Dickerson, Jeramy R.; Fischer, Arthur J.; Baca, A.G.; Douglas, Erica A.

"Ultra" wide-bandgap semiconductors are an emerging class of materials with bandgaps greater than that of gallium nitride (EG >3.4 eV) that may ultimately benefit a wide range of applications, including switching power conversion, pulsed power, RF electronics, UV optoelectronics, and quantum information. This paper describes the progress made to date at Sandia National Laboratories to develop one of these materials, aluminum gallium nitride, targeted toward high-power devices. The advantageous material properties of AlGaN are reviewed, questions concerning epitaxial growth and defect physics are covered, and the processing and performance of vertical- and lateral-geometry devices are described. The paper concludes with an assessment of the outlook for AlGaN, including outstanding research opportunities and a brief discussion of other potential applications.

More Details

Inductively coupled BCl3/Cl2 /Ar plasma etching of Al-rich AlGaN

Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films

Douglas, Erica A.; Sanchez, Carlos A.; Kaplar, Robert K.; Allerman, A.A.; Baca, A.G.

Varying atomic ratios in compound semiconductors is well known to have large effects on the etching properties of the material. The use of thin device barrier layers, down to 25 nm, adds to the fabrication complexity by requiring precise control over etch rates and surface morphology. The effects of bias power and gas ratio of BCl3 to Cl2 for inductively coupled plasma etching of high Al content AlGaN were contrasted with AlN in this study for etch rate, selectivity, and surface morphology. Etch rates were greatly affected by both bias power and gas chemistry. Here we detail the effects of small variations in Al composition for AlGaN and show substantial changes in etch rate with regards to bias power as compared to AlN.

More Details

Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes

Applied Physics Letters

Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Allerman, A.A.; Moseley, Michael; Armstrong, Andrew A.; Rajan, Siddharth

We discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be used to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.

More Details

Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes

Applied Physics Letters

King, M.P.; Kaplar, Robert K.; Dickerson, Jeramy R.; Lee, Stephen R.; Allerman, A.A.; Crawford, Mary H.; Fischer, A.J.; Marinella, M.J.; Flicker, Jack D.; Fleming, Robert M.; Kizilyalli, I.C.; Aktas, O.; Armstrong, Andrew A.

Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (∼104 - 106cm-2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at Ec-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be Nt = 3 × 1012, 2 × 1015, and 5 × 1014cm-3, respectively. The Ec-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large VBD in the next-generation wide-bandgap power semiconductor devices. Thus, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.

More Details

Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions

Applied Physics Letters

Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Allerman, A.A.; Moseley, Michael; Armstrong, Andrew A.; Rajan, Siddharth

Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and the light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction >50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced three dimensional charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. The design of graded tunnel junction structures could lead to low tunneling resistance below 10-3 Ω cm2 and low voltage consumption below 1 V (at 1 kA/cm2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance and can enable efficient emitters in the UV-C wavelength range.

More Details

An AlN/Al0.85Ga0.15N high electron mobility transistor

Applied Physics Letters

Baca, A.G.; Armstrong, Andrew A.; Allerman, A.A.; Douglas, Erica A.; Sanchez, Carlos A.; King, Michael P.; Coltrin, Michael E.; Fortune, Torben R.; Kaplar, Robert K.

An AlN barrier high electron mobility transistor (HEMT) based on the AlN/Al0.85Ga0.15N heterostructure was grown, fabricated, and electrically characterized, thereby extending the range of Al composition and bandgap for AlGaN channel HEMTs. An etch and regrowth procedure was implemented for source and drain contact formation. A breakdown voltage of 810 V was achieved without a gate insulator or field plate. Excellent gate leakage characteristics enabled a high Ion/Ioff current ratio greater than 107 and an excellent subthreshold slope of 75 mV/decade. A large Schottky barrier height of 1.74 eV contributed to these results. In conclusion, the room temperature voltage-dependent 3-terminal off-state drain current was adequately modeled with Frenkel-Poole emission.

More Details

Al00.3Ga0.7N PN diode with breakdown voltage >1600 V

Electronics Letters

Allerman, A.A.; Armstrong, Andrew A.; Fischer, Arthur J.; Dickerson, Jeramy R.; Crawford, Mary H.; King, Michael P.; Moseley, Michael; Wierer, J.Jr.; Kaplar, Robert K.

Demonstration of Al00.3Ga0.7N PN diodes grown with breakdown voltages in excess of 1600 V is reported. The total epilayer thickness is 9.1 μm and was grown by metal-organic vapour-phase epitaxy on 1.3-mm-thick sapphire in order to achieve crack-free structures. A junction termination edge structure was employed to control the lateral electric fields. A current density of 3.5 kA/cm2 was achieved under DC forward bias and a reverse leakage current <3 nA was measured for voltages <1200 V. The differential on-resistance of 16 mΩ cm2 is limited by the lateral conductivity of the n-type contact layer required by the front-surface contact geometry of the device. An effective critical electric field of 5.9 MV/cm was determined from the epilayer properties and the reverse current–voltage characteristics. To our knowledge, this is the first aluminium gallium nitride (AlGaN)-based PN diode exhibiting a breakdown voltage in excess of 1 kV. Finally, we note that a Baliga figure of merit (Vbr2/Rspec,on) of 150 MW/cm2 found is the highest reported for an AlGaN PN diode and illustrates the potential of larger-bandgap AlGaN alloys for high-voltage devices.

More Details

High voltage and high current density vertical GaN power diodes

Electronics Letters

Armstrong, Andrew A.; Allerman, A.A.; Fischer, Arthur J.; King, M.P.; Van Heukelom, Michael V.; Moseley, M.W.; Kaplar, Robert K.; Wierer, J.J.; Crawford, Mary H.; Dickerson, Jeramy R.

The realisation of a GaN high voltage vertical p-n diode operating at >3.9 kV breakdown with a specific on-resistance <0.9 mΩ cm2 is reported. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density >1.4 kA/cm2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. This suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

More Details

In-Operando Spatial Imaging of Edge Termination Electric Fields in GaN Vertical p-n Junction Diodes

IEEE Electron Device Letters

Leonard, Francois L.; Dickerson, Jeramy R.; King, M.P.; Armstrong, Andrew A.; Fischer, Arthur J.; Allerman, A.A.; Kaplar, R.J.; Talin, A.A.

Control of electric fields with edge terminations is critical to maximize the performance of high-power electronic devices. While a variety of edge termination designs have been proposed, the optimization of such designs is challenging due to many parameters that impact their effectiveness. While modeling has recently allowed new insight into the detailed workings of edge terminations, the experimental verification of the design effectiveness is usually done through indirect means, such as the impact on breakdown voltages. In this letter, we use scanning photocurrent microscopy to spatially map the electric fields in vertical GaN p-n junction diodes in operando. We reveal the complex behavior of seemingly simple edge termination designs, and show how the device breakdown voltage correlates with the electric field behavior. Modeling suggests that an incomplete compensation of the p-type layer in the edge termination creates a bilayer structure that leads to these effects, with variations that significantly impact the breakdown voltage.

More Details

Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs

Applied Physics Express

Zhang, Yuewei; Allerman, A.A.; Krishnamoorthy, Sriram; Akyol, Fatih; Moseley, Michael; Armstrong, Andrew A.; Rajan, Siddharth

The efficiency of ultraviolet (UV) light-emitting diodes (LEDs) is critically limited by absorption losses in p-type and metal layers. In this work, surface-roughening-based light extraction structures were combined with tunneling-based top-layer contacts to achieve highly efficient top-side light extraction in UV LEDs. By using self-assembled Ni nanoclusters as an etch mask, the top surface-roughened LEDs were found to enhance the external quantum efficiency by over 40% for UV LEDs with a peak emission wavelength of 326 nm. The method described here can be used for fabricating highly efficient UV LEDs without the need for complex manufacturing techniques such as flip chip bonding.

More Details

Cubic Gallium Nitride on Micropatterned Si (001) for Longer Wavelength LEDs

Durniak, Mark T.; Chaudhuri, Anabil C.; Smith, Michael; Allerman, A.A.; Lee, S.C.; Brueck, S.R.; Wetzel, Christian W.

GaInN/GaN heterostructures of cubic phase have the potential to overcome the limitations of wurtzite structures commonly used for light emitting and laser diodes. Wurtzite GaInN suffers from large internal polarization fields, which force design compromises ( 0001 ) towards ultra-narrow quantum wells and reduce recombination volume and efficiency. Cubic GaInN microstripes grown at Rensselaer Polytechnic Institute by metal organic vapor phase epitaxy on micropatterned Si , with {111} v-grooves oriented along Si ( 001 ) , offer a system free of internal polarization fields, wider quantum wells, and smaller <00$\bar1$> bandgap energy. We prepared 6 and 9 nm Ga x In 1-x N/GaN single quantum well structures with peak wavelength ranges from 520 to 570 nm with photons predominately polarized perpendicular to the grooves. We estimate a cubic InN composition range of 0 < x < 0.5 and an upper limit of the internal quantum efficiency of 50%. Stripe geometry and polarization may be suitable for mode confinement and reduced threshold stimulated emission.

More Details

Ultra-Wide-Bandgap Semiconductors for Generation-After-Next Power Electronics

Kaplar, Robert K.; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Fischer, Arthur J.; Dickerson, Jeramy R.; King, Michael P.; Baca, A.G.; Douglas, Erica A.; Sanchez, Carlos A.; Neely, Jason C.; Flicker, Jack D.; Zutavern, Fred J.; Mauch, Daniel L.; Brocato, Robert W.; Rashkin, Lee; Delhotal, Jarod J.; Fang, Lu F.; Kizilyalli, Isik C.; Aktas, Ozgur A.

Abstract not provided.

Vertical GaN power diodes with a bilayer edge termination

IEEE Transactions on Electron Devices

Dickerson, Jeramy R.; Allerman, A.A.; Bryant, Benjamin N.; Fischer, Arthur J.; King, Michael P.; Moseley, Michael; Armstrong, Andrew A.; Kaplar, Robert K.; Kizilyalli, Isik C.; Aktas, Ozgur; Wierer, Jonathan J.

Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (104 - 105 cm-2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 1015 cm-3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p) layer near the n-type drift region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. Simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.

More Details

Performance and Breakdown Characteristics of Irradiated Vertical Power GaN P-i-N Diodes

IEEE Transactions on Nuclear Science

King, M.P.; Armstrong, Andrew A.; Dickerson, Jeramy R.; Vizkelethy, Gyorgy V.; Fleming, Robert M.; Campbell, Jonathan C.; Wampler, W.R.; Kizilyalli, I.C.; Bour, D.P.; Aktas, O.; Nie, H.; DIsney, D.; Wierer, J.; Allerman, A.A.; Moseley, M.W.; Leonard, F.; Talin, A.A.; Kaplar, Robert K.

Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence < {10{13}} hbox{cm}-2. The unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaN P-i-Ns remain superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.

More Details

Laser diodes with 353nm wavelength enabled by reduced-dislocation-density AlGaN templates

Applied Physics Express

Crawford, Mary H.; Allerman, A.A.; Armstrong, Andrew A.; Smith, Michael; Cross, Karen C.

We fabricated optically pumped and electrically injected ultraviolet (UV) lasers on reduced-threading-dislocation-density (reduced-TDD) AlGaN templates. The overgrowth of sub-micron-wide mesas in the Al0.32Ga0.68N templates enabled a tenfold reduction in TDD, to (2-3) × 108cm%2. Optical pumping of AlGaN hetero-structures grown on the reduced-TDD templates yielded a low lasing threshold of 34kW/cm2 at 346 nm. Roomtemperature pulsed operation of laser diodes at 353nm was demonstrated, with a threshold of 22.5 kA/cm2. Reduced-TDD templates have been developed across the entire range of AlGaN compositions, presenting a promising approach for extending laser diodes into the deep UV.

More Details

Enhanced optical nonlinearities in the near-infrared using III-nitride heterostructures coupled to metamaterials

Applied Physics Letters

Wolf, Omri W.; Allerman, A.A.; Ma, Xuedan M.; Wendt, J.R.; Song, Alex Y.; Shaner, Eric A.; Brener, Igal B.

We use planar metamaterial resonators to enhance by more than two orders of magnitude the near infrared second harmonic generation obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators' cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a different class of sources for quantum photonics related phenomena.

More Details
Results 1–200 of 318
Results 1–200 of 318