Publications

4 Results
Skip to search filters

Emergent interface vibrational structure of oxide superlattices

Nature

Hoglund, Eric R.; Bao, De L.; O’Hara, Andrew; Makarem, Sara; Piontkowski, Zachary T.; Matson, Joseph R.; Yadav, Ajay K.; Haislmaier, Ryan C.; Engel-Herbert, Roman; Ihlefeld, Jon F.; Ravichandran, Jayakanth; Ramesh, Ramamoorthy; Caldwell, Joshua D.; Beechem, Thomas E.; Tomko, John A.; Hachtel, Jordan A.; Pantelides, Sokrates T.; Hopkins, Patrick E.; Howe, James M.

As the length scales of materials decrease, the heterogeneities associated with interfaces become almost as important as the surrounding materials. This has led to extensive studies of emergent electronic and magnetic interface properties in superlattices1–9. However, the interfacial vibrations that affect the phonon-mediated properties, such as thermal conductivity10,11, are measured using macroscopic techniques that lack spatial resolution. Although it is accepted that intrinsic phonons change near boundaries12,13, the physical mechanisms and length scales through which interfacial effects influence materials remain unclear. Here we demonstrate the localized vibrational response of interfaces in strontium titanate–calcium titanate superlattices by combining advanced scanning transmission electron microscopy imaging and spectroscopy, density functional theory calculations and ultrafast optical spectroscopy. Structurally diffuse interfaces that bridge the bounding materials are observed and this local structure creates phonon modes that determine the global response of the superlattice once the spacing of the interfaces approaches the phonon spatial extent. Our results provide direct visualization of the progression of the local atomic structure and interface vibrations as they come to determine the vibrational response of an entire superlattice. Direct observation of such local atomic and vibrational phenomena demonstrates that their spatial extent needs to be quantified to understand macroscopic behaviour. Tailoring interfaces, and knowing their local vibrational response, provides a means of pursuing designer solids with emergent infrared and thermal responses.

More Details

Effects of strain, disorder, and Coulomb screening on free-carrier mobility in doped cadmium oxide

Journal of Applied Physics

Piontkowski, Zachary T.; Runnerstrom, Evan L.; Cleri, Angela; McDonald, Anthony E.; Ihlefeld, Jon; Saltonstall, Christopher B.; Maria, Jon P.; Beechem, Thomas E.

The interplay of stress, disorder, and Coulomb screening dictating the mobility of doped cadmium oxide (CdO) is examined using Raman spectroscopy to identify the mechanisms driving dopant incorporation and scattering within this emerging infrared optical material. Specifically, multi-wavelength Raman and UV-vis spectroscopies are combined with electrical Hall measurements on a series of yttrium (X = Y) and indium (X = In) doped X:CdO thin-films. Hall measurements confirm n-type doping and establish carrier concentrations and mobilities. Spectral fitting along the low-frequency Raman combination bands, especially the TA+TO(X) mode, reveals that the evolution of strain and disorder within the lattice as a function of dopant concentration is strongly correlated with mobility. Coupling between the electronic and lattice environments was examined through analysis of first- and second-order longitudinal-optical phonon-plasmon coupled modes that monotonically decrease in energy and asymmetrically broaden with increasing dopant concentration. By fitting these trends to an impurity-induced Fröhlich model for the Raman scattering intensity, exciton-phonon and exciton-impurity coupling factors are quantified. These coupling factors indicate a continual decrease in the amount of ionized impurity scattering with increasing dopant concentration and are not as well correlated with mobility. This shows that lattice strain and disorder are the primary determining factors for mobility in donor-doped CdO. In aggregate, the study confirms previously postulated defect equilibrium arguments for dopant incorporation in CdO while at the same time identifying paths for its further refinement.

More Details
4 Results
4 Results