Publications

2 Results
Skip to search filters

Resilience Enhancements through Deep Learning Yields

Eydenberg, Michael S.; Batsch-Smith, Lisa B.; Bice, Charles T.; Blakely, Logan; Bynum, Michael L.; Boukouvala, Fani B.; Castillo, Anya C.; Haddad, Joshua H.; Hart, William E.; Jalving, Jordan H.; Kilwein, Zachary A.; Laird, Carl D.; Skolfield, Joshua K.

This report documents the Resilience Enhancements through Deep Learning Yields (REDLY) project, a three-year effort to improve electrical grid resilience by developing scalable methods for system operators to protect the grid against threats leading to interrupted service or physical damage. The computational complexity and uncertain nature of current real-world contingency analysis presents significant barriers to automated, real-time monitoring. While there has been a significant push to explore the use of accurate, high-performance machine learning (ML) model surrogates to address this gap, their reliability is unclear when deployed in high-consequence applications such as power grid systems. Contemporary optimization techniques used to validate surrogate performance can exploit ML model prediction errors, which necessitates the verification of worst-case performance for the models.

More Details

Perspectives on the integration between first-principles and data-driven modeling

Computers and Chemical Engineering

Bradley, William B.; Kim, Jinhyeun K.; Kilwein, Zachary A.; Blakely, Logan; Eydenberg, Michael S.; Jalving, Jordan H.; Laird, Carl D.; Boukouvala, Fani B.

Efficiently embedding and/or integrating mechanistic information with data-driven models is essential if it is desired to simultaneously take advantage of both engineering principles and data-science. Further the opportunity for hybridization occurs in many scenarios, such as the development of a faster model of an accurate high-fidelity computer model; the correction of a mechanistic model that does not fully-capture the physical phenomena of the system; or the integration of a data-driven component approximating an unknown correlation within a mechanistic model. At the same time, different techniques have been proposed and applied in different literatures to achieve this hybridization, such as hybrid modeling, physics-informed Machine Learning (ML) and model calibration. In this paper we review the methods, challenges, applications and algorithms of these three research areas and discuss them in the context of the different hybridization scenarios. Moreover, we provide a comprehensive comparison of the hybridization techniques with respect to their differences and similarities, as well as advantages and limitations and future perspectives. Finally, we apply and illustrate hybrid modeling, physics-informed ML and model calibration via a chemical reactor case study.

More Details
2 Results
2 Results