Lead–acid batteries are important to modern society because of their wide usage and low cost. The primary source for production of new lead–acid batteries is from recycling spent lead–acid batteries. In spent lead–acid batteries, lead is primarily present as lead pastes. In lead pastes, the dominant component is lead sulfate (PbSO4, mineral name anglesite) and lead oxide sulfate (PbO•PbSO4, mineral name lanarkite), which accounts for more than 60% of lead pastes. In the recycling process for lead–acid batteries, the desulphurization of lead sulfate is the key part to the overall process. In this work, the thermodynamic constraints for desulphurization via the hydrometallurgical route for recycling lead pastes are presented. The thermodynamic constraints are established according to the thermodynamic model that is applicable and important to recycling of lead pastes via hydrometallurgical routes in high ionic strength solutions that are expected to be in industrial processes. The thermodynamic database is based on the Pitzer equations for calculations of activity coefficients of aqueous species. The desulphurization of lead sulfates represented by PbSO4 can be achieved through the following routes. (1) conversion to lead oxalate in oxalate-bearing solutions; (2) conversion to lead monoxide in alkaline solutions; and (3) conversion to lead carbonate in carbonate solutions. Among the above three routes, the conversion to lead oxalate is environmentally friendly and has a strong thermodynamic driving force. Oxalate-bearing solutions such as oxalic acid and potassium oxalate solutions will provide high activities of oxalate that are many orders of magnitude higher than those required for conversion of anglesite or lanarkite to lead oxalate, in accordance with the thermodynamic model established for the oxalate system. An additional advantage of the oxalate conversion route is that no additional reductant is needed to reduce lead dioxide to lead oxide or lead sulfate, as there is a strong thermodynamic force to convert lead dioxide directly to lead oxalate. As lanarkite is an important sulfate-bearing phase in lead pastes, this study evaluates the solubility constant for lanarkite regarding the following reaction, based on the solubility data, PbO•PbSO4 + 2H+ ⇌ 2Pb2+ + SO42– + H2O(l).
This report summarizes the 2021 fiscal year (FY21) status of ongoing borehole heater tests in salt funded by the disposal research and development (R&D) program of the Office of Spent Fuel & Waste Science and Technology (SFWST) of the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office of Spent Fuel and Waste Disposition (SFWD). This report satisfies SFWST milestone M2SF- 21SN010303052 by summarizing test activities and data collected during FY21. The Brine Availability Test in Salt (BATS) is fielded in a pair of similar arrays of horizontal boreholes in an experimental area at the Waste Isolation Pilot Plant (WIPP). One array is heated, the other unheated. Each array consists of 14 boreholes, including a central borehole with gas circulation to measure water production, a cement seal exposure test, thermocouples to measure temperature, electrodes to infer resistivity, a packer-isolated borehole to add tracers, fiber optics to measure temperature and strain, and piezoelectric transducers to measure acoustic emissions. The key new data collected during FY21 include a series of gas tracer tests (BATS phase 1b), a pair of liquid tracer tests (BATS phase 1c), and data collected under ambient conditions (including a period with limited access due to the ongoing pandemic) since BATS phase 1a in 2020. A comparison of heated and unheated gas tracer test results clearly shows a decrease in permeability of the salt upon heating (i.e., thermal expansion closes fractures, which reduces permeability).
Actinide oxalates are chemical compounds important to nuclear industry, ranging from actinide separation in waste reprocessing, to production of specialty actinides, and to disposal of high level nuclear waste (HLW) and spent nuclear fuel (SNF). In this study, the solubility constants for Pr2(C2O4)3·10H2O and Nd2(C2O4)3·10H2O by performing solubility experiments in HNO3 and mixtures of HNO3 and H2C2O4 at 23.0 ± 0.2 °C have been determined. The targeted starting materials, Pr2(C2O4)3·10H2O and Nd2(C2O4)3·10H2O, were successfully synthesized at room temperature using PrCl3, NdCl3 and oxalic acid as the source metrials. Then, we utilized the targeted solubility-controlling phases to conduct solubility measurements. There was no phase change over the entire periods of experiments, demonstrating that Pr2(C2O4)3·10H2O and Nd2(C2O4)3·10H2O were the solubility-controlling phases in our respective experiments. Based on our experimental data, we have developed a thermodynamic model for Pr2(C2O4)3·10H2O and Nd2(C2O4)3·10H2O in the mixtures of HNO3 and H2C2O4 to high ionic strengths. The model for Pr2(C2O4)3·10H2O reproduces well the reported experimental data for Pu2(C2O4)3·10H2O, which are not utilized for the model development, demonstrating that Pr(III) is an excellent analog for Pu(III). Similarly, the model for Nd2(C2O4)3·10H2O reproduces the solubility of Am2(C2O4)3·10H2O and Cm2(C2O4)3·10H2O. The Pitzer model was used for the calculation of activity coefficients. Based on the published, well established model for dissociation constants for oxalic acid and stability constants for actinide-oxalate complexes [i.e., AmC2O4+, and Am(C2O4)2−] to high ionic strengths, we have obtained the solubility constants (log10K0) for the following reactions at 25 °C,Pr2(C2O4)3·10H2O ⇌ 2Pr3+ + 3C2O42− + 10H2O(l)Nd2(C2O4)3·10H2O ⇌ 2Nd3+ + 3C2O42− + 10H2O(l) to be −30.82 ± 0.30 (2σ), and −31.14 ± 0.35 (2σ), respectively. These values can be directly applied to Pu2(C2O4)3·10H2O, Am2(C2O4)3·10H2O and Cm2(C2O4)3·10H2O. The model established for actinide oxalates by this study provides the needed knowledge with regard to solubilities of actinide/REE oxalates at various ionic strengths, and is expected to find applications in many fields, including the geological disposal of nuclear waste and the mobility of REE under the surface conditions, as Pr2(C2O4)3·10H2O and Nd2(C2O4)3·10H2O can be regarded as the pure Pr and Nd end-members of deveroite, a recently discovered natural REE oxalate with the following stoichiometry, (Ce1.01Nd0.33La0.32Pr0.11Y0.11Sm0.01Pb0.04U0.03Th0.01Ca0.04)2.01(C2O4)2.99·9.99H2O. Regarding its importance in the geological disposal of nuclear waste, Am2(C2O4)3·10H2O/Pu2(C2O4)3·10H2O/Cm2(C2O4)3·10H2O can be the source-term phase for actinides, as demonstrated by the instance in the disposal in clay/shale formations. This is exemplified by the stability of Am2(C2O4)3·10H2O in comparison with Am(OH)3(am), Am(OH)3(s) and AmCO3(OH)(s) under the relevant geological repository conditions.
In this study, I present experimental results on the equilibrium between boracite [Mg3B7O13Cl(cr)] and kurnakovite [chemical formula, Mg2B6O11.15H2O(cr); structural formula, MgB3O3(OH)5.5H2O(cr)] at 22.5 ± 0.5 °C from a long-term experiment up to 1629 days, approaching equilibrium from the direction of supersaturation, Mg3B7O13Cl(cr) + H+ + 2B(OH)4 + 18H2O(1) . 3MgB3O3(OH)5.5H2O(cr) + Cl . Based on solubility measurements, the 10-based logarithm of the equilibrium constant for the above reaction at 25 °C is determined to be 12.83 ± 0.08 (2s). Based on the equilibrium constant for dissolution of boracite, Mg3B7O13Cl(cr) + 15H2O(l) = 3Mg2+ + 7B(OH)4 + Cl + 2H+ at 25 °C measured previously (Xiong et al. 2018) and that for the reaction between boracite and kurnakovite determined here, the equilibrium constant for dissolution of kurnakovite, MgB3O3(OH)5.5H2O(cr) = Mg2+ + 3B(OH)4 + H+ + H2O(1) is derived as 14.11 ± 0.40 (2s). Using the equilibrium constant for dissolution of kurnakovite obtained in this study and the experimental enthalpy of formation for kurnakovite from the literature, a set of thermodynamic properties for kurnakovite at 25 °C and 1 bar is recommended as follows: ΔH0f = 4813.24 ± 4.92 kJ/mol, .G0f = 4232.0 ± 2.3 kJ/mol, and S0 = 414.3 ± 0.9 J/(mol.K). Among them, the Gibbs energy of formation is based on the equilibrium constant for kurnakovite determined in this study; the enthalpy of formation is from the literature (Li et al. 1997), and the standard entropy is calculated internally with the Gibbs-Helmholtz equation in this work. The thermodynamic properties of kurnakovite estimated using the group contribution method for borate minerals based on the sums of contributions from the cations, borate polyanions, and structural water to the thermodynamic properties from the literature (Li et al. 2000) are consistent, within their uncertainties, with the values listed above. Since kurnakovite usually forms in salt lakes rich in sulfate, studying the interactions of borate with sulfate is important to modeling kurnakovite in salt lakes. For this purpose, I have re-calibrated our previous model (Xiong et al. 2013) describing the interactions of borate with sulfate based on the new solubility data for borax in Na2SO4 solutions presented here.
The US Department of Energy Office of Nuclear Energy is conducting a brine availability heater test to characterize the thermal, mechanical, hydrological and chemical response of salt at elevated temperatures. In the heater test, brines will be collected and analyzed for chemical compositions. In order to support the geochemical modeling of chemical evolutions of the brines during the heater test, we are recalibrating and validating the solubility models for the mineral constituents in salt formations up to 100°C, based on the solubility data in multiple component systems as well as simple systems from literature. In this work, we systematically compare the model-predicted values based on the various solubility models related to the constituents of salt formations, with the experimental data. As halite is the dominant constituent in salt formations, we first test the halite solubility model in the Na-Mg-Cl dominated brines. We find the existing halite solubility model systematically over-predict the solubility of halite. We recalibrate the halite model, which can reproduce halite solubilities in Na-Mg-Cl dominated brines well. As gypsum/anhydrite in salt formations controls the sulfate concentrations in associated brines, we test the gypsum solubility model in NaCl solutions up to 5.87 mol•kg-1 from 25°C to 50°C. The testing shows that the current gypsum solubility model reproduces the experimental data well when NaCl concentrations are less than 1 mol•kg-1. However, at NaCl concentrations higher than 1, the model systematically overpredicts the solubility of gypsum. In the Na - Cl - SO4 - CO3 system, the validation tests up to 100°C demonstrate that the model excellently reproduces the experimental data for the solution compositions equilibrated with one single phase such as halite (NaCl) or thenardite (Na2SO4), with deviations equal to, or less than, 1.5 %. The model is much less ideal in reproducing the compositions in equilibrium with the assemblages of halite + thenardite, and of halite + thermonatrite (Na2CO3•H2O), with deviations up to 31 %. The high deviations from the experimental data for the multiple assemblages in this system at elevated temperatures may be attributed to the facts that the database has the Pitzer interaction parameters for Cl - CO3 and SO4 - CO3 only at 25°C. In the Na - Ca - SO4 - HCO3 system, the validation tests also demonstrate that the model reproduces the equilibrium compositions for one single phase such as gypsum better than the assemblages of more than one phase.
Montmorillonite with an empirical formula of Na0.2Ca0.1Al2Si4O10(OH)2(H2O)10 is a di-octahedral smectite. Montmorillonite-rich bentonite is a primary buffer candidate for high level nuclear waste (HLW) and used nuclear fuel to be disposed in mild environments. In such environments, temperatures are expected to be ≤ 90oC, the solutions are of low ionic strengths, and pH is close to neutral. Under the conditions outside the above parameters, the performance of montmorillonite-rich bentonite is deteriorated because of collapse of swelling particles as a result of illitization, and dissolution of the swelling clay minerals followed by precipitation of non-swelling minerals. It has been well known that tri-octahedral smectites such as saponite, with an ideal formula of Mg3(Si, Al)4O10(OH)2•4H2O for an Mg-end member (saponite-15A), are less susceptible to alteration under harsh conditions. Recently, Mg-bearing saponite has been favorably considered as a preferable engineered buffer material for the Swedish very deep holes (VDH) disposal concept in crystalline rock formations. In the VDH, HLW is disposed in deep holes at depth between 2,000 m and 4,000 m. At such deployment depths, the temperatures are expected to be between 100oC and 150oC, and the groundwater is of high ionic strength. The harsh chemical conditions of high pH are also introduced by the repository designs in which concretes and cements are used as plugs and buffers. In addition, harsh chemical conditions introduced by high ionic strength solutions are also present in repository designs in salt formations and sedimentary basins. For instance, the two brines associated with the salt formations for the Waste Isolation Pilot Plant (WIPP) in USA have ionic strengths of 5.82 mol•kg-1 (ERDA-6) and 8.26 mol•kg-1 (GWB). In the Asse site proposed for a geological repository in salt formations in Germany, the Q-brine has an ionic strength of ~13 mol•kg-1. In this work, we present our investigations regarding the stability of saponite under hydrothermal conditions in harsh environments.
Methane (CH4) and carbon dioxide (CO2), the two major components generated from kerogen maturation, are stored dominantly in nanometer-sized pores in shale matrix as (1) a compressed gas, (2) an adsorbed surface species and/or (3) a species dissolved in pore water (H2O). In addition, supercritical CO2 has been proposed as a fracturing fluid for simultaneous enhanced oil/gas recovery (EOR) and carbon sequestration. A mechanistic understanding of CH4-CO2-H2O interactions in shale nanopores is critical for designing effective operational processes. Using molecular simulations, we show that kerogen preferentially retains CO2 over CH4 and that the majority of CO2 either generated during kerogen maturation or injected in EOR will remain trapped in the kerogen matrix. The trapped CO2 may be released only if the reservoir pressure drops below the supercritical CO2 pressure. When water is present in the kerogen matrix, it may block CH4 release. However, the addition of CO2 may enhance CH4 release because CO2 can diffuse through water and exchange for adsorbed methane in the kerogen nanopores.
In this paper, a solubility study on brucite [Mg(OH)2(cr)] in Na2SO4 solutions ranging from 0.01 to 1.8 mol•kg–1, with 0.001 mol•kg–1 borate, has been conducted at 22.5°C. Based on the solubility data, the Pitzer interaction parameters for MgB(OH)4+—SO42– and MgB(OH)4+—Na+ along with the formation constant for MgSO4(aq) are evaluated using the Pitzer model. The formation constant (log10β10= 2.38 ± 0.08) for MgSO4(aq) at 25°C and infinite dilution obtained in this study is in excellent agreement with the literature values. The experimental data on the solubility of gypsum (CaSO4•2H2O), at 25°C, in aqueous solutions of MgSO4 with ionic strengths up to ~11 mol•kg–1 were analyzed using models with and without considering the MgSO4(aq) species. The model incorporating MgSO4(aq) fits better to the experimental data than the model without MgSO4(aq), especially in the ionic strength range beyond ~4 mol•kg–1, demonstrating the need for incorporation of MgSO4(aq) into the model to improve the accuracy.
In this work, solubility measurements regarding boracite [Mg3B7O13Cl(cr)] and aksaite [MgB6O7(OH)6·2H2O(cr)] from the direction of supersaturation were conducted at 22.5 ± 0.5 °C. The equilibrium constant (log10K0) for boracite in terms of the following reaction, Mg3B7O13Cl(cr) + 15H2O(l) ⇌ 3Mg2+ + 7B(OH)4– + Cl– + 2H+ is determined as -29.49 ± 0.39 (2σ) in this study. The equilibrium constant for aksaite according to the following reaction, MgB6O7(OH)6•2H2O(cr) + 9H2O(l) ⇌ Mg2+ + 6B(OH)4– + 4H+ is determined as -44.41 ± 0.41 (2σ) in this work. This work recommends a set of thermodynamic properties for aksaite at 25 °C and 1 bar as follows: ΔH$0\atop{f}$ =-6063.70 ± 4.85 kJ·mol-1, ΔG =-5492.55 ± 2.32 kJ·mol-1, and S0 = 344.62 ± 1.85 J·mol-1·K-1. Among them, ΔG$0\atop{f}$ is derived from the equilibrium constant for aksaite determined by this study; ΔH$0\atop{f}$ is from the literature, determined by calorimetry; and S0 is computed in the present work from ΔG$0\atop{f}$ and ΔH$0\atop{f}$. This investigation also recommends a set of thermodynamic properties for boracite at 25 °C and 1 bar as follows: ΔH$0\atop{f}$ =-6575.02 ± 2.25 kJ·mol-1, ΔG$0\atop{f}$ =-6178.35 ± 2.25 kJ·mol-1, and S0 = 253.6 ± 0.5 J·mol-1·K-1. Among them, ΔG$0\atop{f}$ is derived from the equilibrium constant for boracite determined by this study; S0 is from the literature, determined by calorimetry; and ΔH$0\atop{f}$ is computed in this work from ΔG$0\atop{f}$ and S0. The thermodynamic properties determined in this study can find applications in many fields. For instance, in the field of material science, boracite has many useful properties including ferroelectric and ferroelastic properties. The equilibrium constant of boracite determined in this work will provide guidance for economic synthesis of boracite in an aqueous medium. Similarly, in the field of nuclear waste management, iodide boracite [Mg3B7O13I(cr)] is proposed as a waste form for radioactive 129I. Therefore, the solubility constant for chloride boracite [Mg3B7O13Cl(cr)] will provide the guidance for the performance of iodide boracite in geological repositories. Boracite/aksaite themselves in geological repositories in salt formations may be solubility-controlling phase(s) for borate. Finally, solubility constants of boracite and aksaite will enable researchers to predict borate concentrations in equilibrium with boracite/aksaite in salt formations.
Radionuclides and heavy metals easily sorb onto colloids. This phenomenon can have a beneficial impact on environmental clean-up activities if one is trying to scavenge hazardous elements from soil for example. On the other hand, it can have a negative impact in cases where one is trying to immobilize these hazardous elements and keep them isolated from the public. Such is the case in the field of radioactive waste disposal. Colloids in the aqueous phase in a radioactive waste repository could facilitate transport of contaminants including radioactive nuclides. Salt formations have been recommended for nuclear waste isolation since the 1950's by the U.S. National Academy of Science. In this capacity, salt formations are ideal for isolation of radioactive waste. However, salt formations contain brine (the aqueous phase), and colloids could possibly be present. If present in the brines associated with salt formations, colloids are highly relevant to the isolation safety concept for radioactive waste. The Waste Isolation Pilot Plant (WIPP) in southeast New Mexico is a premier example where a salt formation is being used as the primary isolation barrier for radioactive waste. WIPP is a U.S. Department of Energy geological repository for the permanent disposal of defenserelated transuranic (TRU) waste. In addition to the geological barrier that the bedded salt formation provides, an engineered barrier of MgO added to the disposal rooms is used in WIPP. Industrial-grade MgO, consisting mainly of the mineral periclase, is in fact the only engineered barrier certified by the U.S. Environmental Protection Agency (EPA) for emplacement in the WIPP. Of interest, an Mg(OH)2-based engineered barrier consisting mainly of the mineral brucite is to be employed in the Asse repository in Germany. The Asse repository is located in a domal salt formation and is another example of using salt formations for disposal of radioactive waste. Should colloids be present in salt formations, they would facilitate transport of contaminants including actinides. In the case of colloids derived from emplaced MgO, it is the hydration and carbonation products that are of interest. These colloids could possibly form under conditions relevant in particular to the WIPP. In this chapter, we report a systematic experimental study performed at Sandia National Laboratories in Carlsbad, New Mexico, related to the WIPP engineered barrier, MgO. The aim of this work is to confirm the presence or absence of mineral fragment colloids related to MgO in high ionic strength solutions (brines). The results from such a study provides information about the stability of colloids in high ionic strength solutions in general, not just for the WIPP. We evaluated the possible formation of mineral fragment colloids using two approaches. The first approach is an analysis of long-term MgO hydration and carbonation experiments performed at Sandia National Laboratories (SNL) as a function of equivalent pore sizes. The MgO hydration products include Mg(OH)2 (brucite) and Mg3 Cl(OH)5•4H2O (phase 5), and the carbonation product includes Mg5(CO3)4(OH)2•4H2O (hydromagnesite). All these phases contain magnesium. Therefore, if mineral fragment colloids of these hydration and carbonation products were formed in the SNL experiments mentioned above, magnesium concentrations in the filtrate from the experiments would show a dependence on ultrafiltration. In other words, there would be a decrease in magnesium concentrations as a function of ultrafiltration with decreasing molecular weight (MW) cut-offs for the filtration. Therefore, we performed ultrafiltration on solution samples from the SNL hydration and carbonation experiments as a function of equivalent pore size. We filtered solutions using a series of MW cut-off filters at 100 kD, 50 kD, 30 kD and 10 kD. Our results demonstrate that the magnesium concentrations remain constant with decreasing MW cutoffs, implying the absence of mineral fragment colloids. The second approach uses spiked Cs+ to indicate the possible presence of mineral fragment colloids. Cs+ is easily absorbed by colloids. Therefore, we added Cs+ to a subset of SNL MgO hydration and carbonation experiments. Again, we filtered the solutions with a series of MW cut-off filters at 100 kD, 50 kD, 30 kD and 10 kD. This time we measured the concentrations of Cs. The concentrations of Cs do not change as a function of MW cut-offs, indicating the absence of colloids from MgO hydration and carbonation products. Therefore, both approaches demonstrate the absence of mineral fragment colloids from MgO hydration and carbonation products. Based on our experimental results, we acknowledge that mineral fragment colloids were not formed in the SNL MgO hydration and carbonation experiments, and we further conclude that high ionic strength solutions associated with salt formations prevent the formation of mineral fragment colloids. This is due to the fact that the high ionic strength solutions associated with salt formations have high concentrations of both monovalent and divalent metal ions that are orders of magnitude higher than the critical coagulation concentrations for mineral fragment colloids. The absence of mineral fragment colloids in high ionic strength solutions implies that contributions from mineral fragment colloids to the total mobile source term of radionuclides in a salt repository are minimal.
In this work, a Pitzer model is developed for the K+(Na+)-Am(OH)4−-Cl−-OH− system based on Am(OH)3(s) solubility data in highly alkaline KOH solutions. Under highly alkaline conditions, the solubility reaction of Am(OH)3(s) is expressed as: Solubilities of Am(OH)3(s) based on the above reaction are modeled as a function of KOH concentrations. The stability constant for Am(OH)4− is evaluated using Am(OH)3(s) solubility data in KOH solutions up to 12 mol•kg-1 taken from the literature. The Pitzer interaction parameters related to Al(OH)4- are used as analogs for the interaction parameters involving Am(OH)4- to obtain the stability constant for Am(OH)4-. The for the reaction is -11.34 ± 0.15 (2σ).
Salt formations have been recommended for nuclear waste isolation since the 1950‘s by the U.S. National Academy of Science. This recommendation has been implemented in southeast New Mexico where the Waste Isolation Pilot Plant (WIPP) has been built to isolate defense-related transuranic waste. The WIPP is located in a bedded salt formation, the Salado Formation. Placement of crystalline MgO, which hydrates rapidly to form brucite, is the only engineered barrier employed in the WIPP design. The MgO acts as a chemical conditioner in the WIPP repository in controlling the fugacity of carbon dioxide. Similarly, an Mg(OH)2-based engineered barrier is proposed for the German Asse salt mine repository. Thus, the solubility of brucite is of interest to salt repository programs which can expect a variety of temperatures within the repository and a variety of fluids (brines) coming in contact with the waste. Salt repository programs are not the only programs that stand to benefit from the information presented in this book chapter. There are other applications where this information is of interest. In natural environments brucite frequently precipitates from hyperalkaline hydrothermal fluids with high ionic strengths. For instance, brucite chimneys have been observed to form at elevated temperatures in ocean floors. The information presented in this work can be used to accurately model the formation of such brucite chimneys. In this study, we have determined solubilities of brucite as a function of ionic strength in NaCl solutions to I = 5.6 mol•kg-1 at elevated temperatures to 353.15 K. In our solubility measurements, we first independently determined the correction factors for converting pH readings to pHm (negative logarithm of hydrogen ion concentration on a molal scale, mol•kg-1) in NaCl solutions from 0.01 to 5.6 mol•kg-1 at elevated temperatures. Using the SIT model, we obtain the solubility constants for brucite at infinite dilution as a function of temperature, which can be described by the following expression, where T is temperature in K. This expression can be used from 273.15 K to 373.15 K.
In this paper, the experimental results from long-term solubility experiments on micro crystalline neodymium hydroxide, Nd(OH)3(micro cr), in high ionic strength solutions at 298.15 K under well-constrained conditions are presented. The starting material was synthesized according to a well-established method in the literature. In contrast with the previous studies in which hydrogen ion concentrations in experiments were adjusted with addition of either an acid or a base, the hydrogen ion concentrations in our experiments are controlled by the dissolution of Nd(OH)3(micro cr), avoiding the possibility of phase change.
In this study, solubility measurements were conducted for sodium polyborates in MgCl2 solutions at 22.5 ± 0.5 °C. According to solution chemistry and XRD patterns, di-sodium tetraborate decahydrate (borax) dissolves congruently, and is the sole solubility-controlling phase, in a 0.01 mol/kg MgCl2 solution: {equation presented} However, in a 0.1 mol/kg MgCl2 solution borax dissolves incongruently and is in equilibrium with di-sodium hexaborate tetrahydrate: {equation presented} In this study, the equilibrium constant (log K0) for Reaction 2 at 25 °C and infinite dilution was determined to be -16.44 ± 0.13 (2σ) based on the experimental data and the Pitzer model for calculations of activity coefficients of aqueous species. In accordance with the log K0 for Reaction 1 from a previous publication from this research group, and log K0 for Reaction 2 from this study, the equilibrium constant for dissolution of di-sodium hexaborate tetrahydrate at 25 °C and at infinite dilution, {equation presented} was derived to be -45.42 ± 0.16 (2σ). The equilibrium constants determined in this study can find applications in many fields. For example, in the field of nuclear waste management, the formation of di-sodium hexaborate tetrahydrate in brines containing magnesium will decrease borate concentrations, making less borate available for interactions with Am(III). In the field of experimental investigations, based on the equilibrium constant for Reaction 2, the experimental systems can be controlled in terms of acidity around neutral pH by using the equilibrium assemblage of borax and di-sodium hexaborate tetrahydrate at 25 °C. As salt lakes and natural brines contain both borate and magnesium as well as sodium, the formation of sodium hexaborate tetrahydrate may influence the chemical evolution of salt lakes and natural brines. Di-sodium hexaborate tetrahydrate is a polymorph of the mineral ameghinite [chemical formula Na2B6O10·4H2O; structural formula NaB3O3(OH)4 or Na2B6O6(OH)8]. Di-sodium hexaborate tetrahydrate could be a precursor of ameghinite and could be transformed when borate deposits are subject to diagenesis.
Gautier et al. (2014) recently published their determination of hydromagnesite solubility constant and hydromagnesite growth kinetics. Although their raw data appear to be of high quality, there is an oversight in their calculations of the hydromagnesite solubility constants given the solution compositions in their experiments. The oversight lies in the fact that they did not consider the constraint of simultaneous equilibrium with brucite. This oversight causes their newly calculated equilibrium constant for hydromagnesite to be discordant with the literature values (Königsberger et al., 1992; Xiong, 2011).
This report is a summary of the international collaboration and laboratory work funded by the US Department of Energy Office of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D work package. This report satisfies milestone levelfour milestone M4SF-17SN010303014. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS) and bedded salt investigations (KOSINA), while the last three sections discuss laboratory work conducted on brucite solubility in brine, dissolution of borosilicate glass into brine, and partitioning of fission products into salt phases.
Borate is present in natural groundwaters and borate is also released into groundwaters when borosilicate glass, waste form for high level nuclear waste, is corroded. Borate can form an aqueous complex, AmHB4O7 2+, with actinides in +III oxidation state. In this work, we present our evaluation of the equilibrium constant for formation of AmHB4O7 2+ and the associated Pitzer interaction parameters at 25°C. Using Nd(III) as an analog to Am(III), solubility data of Nd(OH)3(s) in NaCl solutions in the presence of borate ion from the literature, is used to determine Am(III) interactions with borate. The log10K for the formation reaction is 37.34. This evaluation is in accordance with the Waste Isolation Pilot Plant (WIPP) thermodynamic model in which the borate species include B(OH)3(aq), B(OH)4 -, B3O3(OH)4 -, B4O5(OH)4 2-, and NaB(OH)4(aq). The WIPP thermodynamic database uses the Pitzer model to calculate activity coefficients of aqueous species. In addition, the equilibrium constant for dissolution of AmB9O13(OH)4(cr) at 25°C is evaluated from the solubility data on NdB9O13(OH)4(cr) in NaCl solutions, again using Nd(III) as an analog to Am(III). The log10K for the dissolution reaction is -79.30. In the evaluation for log10K for the dissolution reaction, AmHB4O7 2+ is also considered. The equilibrium constant and Pitzer parameters evaluated by this study will be important to describe the chemical behavior of Am(III) in the presence of borate in geological repositories.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. Industrial-grade MgO consisting mainly of the mineral periclase is the only engineered barrier certified by U.S. EPA for emplacement in the WIPP in the U.S. An Mg(OH)2-based engineered barrier consisting mainly of the mineral brucite is to be employed in the Asse repository in Germany. The WIPP is located in a bedded salt formation, and the Asse repository is located in a domal salt formation. Colloids would facilitate transport of contaminants including actinides. The regulator for the WIPP, U.S. Environmental Protection Agency (EPA), expressed its interest that possible formation of mineral colloids by MgO and its hydration and carbonation products under the WIPP-relevant conditions be evaluated. In this presentation, we report a systematic experimental study to address U.S. EPA's interest. We evaluated the possible formation of mineral colloids by using two approaches. In the first approach, as the hydration products, Mg(OH)2 (brucite), and(Mg)3Cl(OH)5′4H2O (phase 5), and the carbonation product, (Mg)5(CO3)4(OH)2•4H2O (hydromagnesite), contain magnesium, should mineral fragment colloids exist, magnesium concentrations in solution samples from MgO hydration and carbonation experiments would show a dependence on ultrafiltration, i.e., a decrease in magnesium concentrations as a function of ultrafiltration with decreasing molecular weight (MW) cut-offs. Therefore, we investigated magnesium concentrations from solutions samples in hydration and carbonation experiments as a function of ultrafiltration. We ultrafiltered solutions with a series of MW cut-off filters at 100 κD, 50 κD, 30 κD and 10 κD. Our results demonstrate that the magnesium concentrations remain constant with decreasing MW cut-offs, implying the absence of mineral fragment colloids. In the second approach, because Cs+ is easily absorbed by colloids, we spiked MgO hydration and carbonation experiments under the WIPP-relevant conditions with Cs+. Then, we ultra-filtered solutions with a series of MW cut-off filters at 100 κD, 50 κD, 30 κD and 10 κD. The concentrations of Cs do not change as a function of MW cut-offs, indicating the absence of colloids from MgO hydration and carbonation products. Therefore, both approaches demonstrate that the absence of mineral fragment colloids from MgO hydration and carbonation products.
In this study, solubility constants of hydroxyl sodalite (ideal formula, Na8[Al6Si6O24][OH]2·3H2O) from 25 °C to 100 °C are obtained by applying a high temperature Al—Si Pitzer model to evaluate solubility data on hydroxyl sodalite in high ionic strength solutions at elevated temperatures. A validation test comparing model-independent experimental data to model predictions demonstrates that the solubility values produced by the model are in excellent agreement with the experimental data. The equilibrium constants obtained in this study have a wide range of applications, including synthesis of hydroxyl sodalite, de-silication in the Bayer process for extraction of alumina, and the performance of proposed sodalite waste forms in geological repositories in various lithologies including salt formations. The thermodynamic calculations based on the equilibrium constants obtained in this work indicate that the solubility products in terms of mΣAl×mΣSi for hydroxyl sodalite are very low (e.g., ∼10–13 [mol·kg–1]2 at 100 °C) in brines characteristic of salt formations, implying that sodalite waste forms would perform very well in repositories located in salt formations. The information regarding the solubility behavior of hydroxyl sodalite obtained in this study provides guidance to investigate the performance of other pure end-members of sodalite such as chloride- and iodide-sodalite, which may be of interest for geological repositories in various media.
The dissociation constants of oxalic acid (Ox), and the stability constants of Am3+, Cm3+ and Eu3+ with Ox2- have been determined at 25°C, over a range of concentration varying from 0.1 to 6.60m NaClO4 using potentiometric titration and extraction techniques, respectively. The experimental data support the formation of complexes, M(Ox)n3-2n, where (M=Am3+, Cm3+ and Eu3+ and n=1 and 2). The dissociation constant and the stability constant values measured as a function of NaClO4 concentration were used to estimate the Pitzer parameters for the respective interactions of Am3+, Cm3+ and Eu3+ with Ox. Furthermore, the stability constants data of Am3+-Ox measured in NaClO4 and in NaCl solutions from the literature were simultaneously fitted in order to refine the existing actinide-oxalate complexation model that can be used universally in the safety assessment of radioactive waste disposal. The thermodynamic stability constant: log β0101=6.30±0.06 and log β0102=10.84±0.06 for Am3+ was obtained by simultaneously fitting data in NaCl and NaClO4 media. Additionally, log β0101=6.72±0.08 and log β0102=11.05±0.09 for the Cm3+ and log β0101=6.67±0.08 and log β0102=11.15±0.09 for the Eu3+ were calculated by extrapolation of data to zero ionic strength in NaClO4 medium only. For all stability constants, the Pitzer model gives an excellent representation of the data using interaction parameters β(0), β(1), and Cϕ determined in this work. The thermodynamic model developed in this work will be useful in accurately modeling the potential solubility of trivalent actinides and early lanthanides to ionic strength of 6.60m in low temperature environments in the presence of Ox. The work is also applicable to the accurate modeling transport of rare earth elements in various environments under the surface conditions.
Abstract In this study, solubility measurements of lead carbonate, PbCO3(cr), cerussite, as a function of total ionic strengths are conducted in the mixtures of NaCl and NaHCO3 up to I = 1.2 mol kg-1 and in the mixtures of NaHCO3 and Na2CO3 up to I = 5.2 mol kg-1, at room temperature (22.5 ± 0.5 °C). The solubility constant (log Kos) for cerussite was determined as -13.76 ± 0.15 (2σ) with a set of Pitzer parameters describing the specific interactions of PbCO3(aq), Pb(CO3)2-2, and Pb(CO3)Cl- with the bulk-supporting electrolytes, based on the Pitzer model. The model developed in this work can reproduce the experimental results including model-independent solubility values from the literature over a wide range of ionic strengths with satisfactory accuracy. The model is expected to find applications in numerous fields, including the accurate description of chemical behavior of lead in geological repositories, the modeling of formation of oxidized Pb-Zn ore deposits, and the environmental remediation of lead contamination.
The Fracture-Matrix Transport (FMT) code developed at Sandia National Laboratories solves chemical equilibrium problems using the Pitzer activity coefficient model with a database containing actinide species. The code is capable of predicting actinide solubilities at 25 C in various ionic-strength solutions from dilute groundwaters to high-ionic-strength brines. The code uses oxidation state analogies, i.e., Am(III) is used to predict solubilities of actinides in the +III oxidation state; Th(IV) is used to predict solubilities of actinides in the +IV state; Np(V) is utilized to predict solubilities of actinides in the +V state. This code has been qualified for predicting actinide solubilities for the Waste Isolation Pilot Plant (WIPP) Compliance Certification Application in 1996, and Compliance Re-Certification Applications in 2004 and 2009. We have established revised actinide-solubility uncertainty ranges and probability distributions for Performance Assessment (PA) by comparing actinide solubilities predicted by the FMT code with solubility data in various solutions from the open literature. The literature data used in this study include solubilities in simple solutions (NaCl, NaHCO{sub 3}, Na{sub 2}CO{sub 3}, NaClO{sub 4}, KCl, K{sub 2}CO{sub 3}, etc.), binary mixing solutions (NaCl+NaHCO{sub 3}, NaCl+Na{sub 2}CO{sub 3}, KCl+K{sub 2}CO{sub 3}, etc.), ternary mixing solutions (NaCl+Na{sub 2}CO{sub 3}+KCl, NaHCO{sub 3}+Na{sub 2}CO{sub 3}+NaClO{sub 4}, etc.), and multi-component synthetic brines relevant to the WIPP.
MgO is the only engineered barrier certified by EPA for the Waste Isolation Pilot Plant (WIPP) in USA. The German Asse repository will also employ an Mg(OH){sub 2} (brucite)-based engineered barrier. The chemical function of the engineered barrier is to consume CO{sub 2} that may be generated by the microbial degradation of organic materials in waste packages. Experimental results at SNL indicate that MgO is first hydrated as brucite, and then brucite is carbonated as hydromagnesite (5424) (Mg{sub 5}(CO{sub 3}){sub 4}(OH){sub 2} {center_dot} 4H{sub 2}O). As MgO is in excess relative to CO{sub 2} that may be produced, the brucite-hydromagnesite (5424) assemblage would buffer f{sub CO2} in the repository. Consequently, the thermodynamic properties of this assemblage is of great significance to the performance assessment (PA) as actinide solubility is strongly affected by f{sub CO2}. In turn, PA is important to the demonstration of the long-term safety of nuclear waste repositories, as assessed by the use of probabilistic performance calculations. There is a substantial discrepancy for {Delta}{sub f}G{sub brucite}{sup 0} in recent publications, ranging from -830.4 (Harvie et al., 1984; Geochim. Cosmochim. Acta, 723-751), through -831.9 (Brown et al., 1996; J. Chem. Soc., Dalton Trans., 3071-3075), through -833.5 (Robie and Hemingway, 1995; USGS Bull., 2131), and to -835.9 kJ mol{sup -1} (Konigsberger et al., 1999; Geochim. Cosmochim. Acta, 3105-3119). Using the {Delta}{sub f}G{sub hydromagnesite (5424)}{sup 0} from Konigsberger et al., the predicted log f{sub CO2} for this assemblage would range from -5.96 ({Delta}{sub f}G{sub brucite}{sup 0} from Harvie et al.) to -4.84 ({Delta}{sub f}G{sub brucite}{sup 0} from Konigsberger et al.). Therefore, it is desirable to better constrain the {Delta}{sub f}G{sub brucite}{sup 0}. For this reason, a series of solubility experiments involving brucite in NaCl solutions ranging from 0.01 M to 4.0 M have being conducted at SNL. The derived {Delta}{sub f}G{sub brucite}{sup 0} from this study by extrapolation to infinite dilution via Pitzer formalism is -830.8 kJ mol{sup -1}, which is in excellent agreement with recommended values of Harvie et al. and Brown et al.