Publications

50 Results
Skip to search filters

In-situ, nanoscale fracture toughness measurements for improved mechanical interfaces

DelRio, Frank W.; Grutzik, Scott J.; Mook, William M.; Dickens, Sara D.; Kotula, Paul G.; Hintsala, Eric H.; Stauffer, Douglas S.; Boyce, Brad B.

In this project, we demonstrated stable nanoscale fracture in single-crystal silicon using an in-situ wedge-loaded double cantilever beam (DCB) specimen. The fracture toughness KIC was calculated directly from instrumented measurement of force and displacement via finite element analysis with frictional corrections. Measurements on multiple test specimens were used to show KIC = 0.72 ± 0.07 MPa m1/2 on {111} planes and observe the crack-growth resistance curve in <500 nm increments. The exquisite stability of crack growth, instrumented measurement of material response, and direct visual access to observe nanoscale fracture processes in an ideally brittle material differentiate this approach from prior DCB methods.

More Details

Coulombic friction in metamaterials to dissipate mechanical energy

Extreme Mechanics Letters

Garland, Anthony G.; Adstedt, Katarina M.; White, Benjamin C.; Mook, William M.; Kaehr, Bryan J.; Jared, Bradley H.; Lester, Brian T.; Leathe, Nicholas L.; Schwaller, Eric; Boyce, Brad B.

Product designs from a wide range of industries such as aerospace, automotive, biomedical, and others can benefit from new metamaterials for mechanical energy dissipation. In this study, we explore a novel new class of metamaterials with unit cells that absorb energy via sliding Coulombic friction. Remarkably, even materials such as metals and ceramics, which typically have no intrinsic reversible energy dissipation, can be architected to provide dissipation akin to elastomers. The concept is demonstrated at different scales (centimeter to micrometer), with different materials (metal and polymer), and in different operating environments (high and low temperatures), all showing substantial dissipative improvements over conventional non-contacting lattice unit cells. Further, as with other ‘programmable’ metamaterials, the degree of Coulombic absorption can be tailored for a given application. An analytic expression is derived to allow rapid first-order optimization. This new class of Coulombic friction energy absorbers can apply broadly to many industrial sectors such as transportation (e.g. monolithic shock absorbers), biomedical (e.g. prosthetics), athletic equipment (e.g. skis, bicycles, etc.), defense (e.g. vibration tolerant structures), and energy (e.g. survivable electrical grid components).

More Details

High Cycle Fatigue in the Transmission Electron Microscope

Nano Letters

Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; Syed Asif, S.A.; Boyce, Brad B.; Hattar, Khalid M.

One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this study, the tension-tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were applied at frequencies from one to several hundred hertz, enabling accumulations of 106 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ∼10-12 m·cycle-1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. These observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.

More Details

Room Temperature Deformation Mechanisms of Alumina Particles Observed from In Situ Micro-compression and Atomistic Simulations

Journal of Thermal Spray Technology

Sarobol, Pylin S.; Chandross, M.; Carroll, Jay D.; Mook, William M.; Bufford, Daniel C.; Boyce, Brad B.; Hattar, Khalid M.; Kotula, Paul G.; Hall, Aaron C.

Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containing numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. The identified deformation mechanisms provide insight into feedstock design for AD.

More Details

Nucleation of fcc Ta when heating thin films

Scripta Materialia

Janish, Matthew T.; Mook, William M.; Carter, C.B.

Thin tantalum films have been studied during in situ heating in a transmission electron microscope. Diffraction patterns from the as-deposited films were typical of amorphous materials. Crystalline grains were observed to form when the specimen was annealed in situ at 450 °C. Particular attention was addressed to the formation and growth of grains with the face-centered cubic (fcc) crystal structure. These observations are discussed in relation to prior work on the formation of fcc Ta by deformation and during thin film deposition.

More Details

Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression

Sarobol, Pylin S.; Chandross, M.; Carroll, Jay D.; Mook, William M.; Boyce, Brad B.; Kotula, Paul G.; McKenzie, Bonnie B.; Bufford, Daniel C.; Hall, Aaron C.

The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and significant plastic deformation during compressi on . On the other hand, the micron sized Al 2 O 3 particles exhibited brittle f racture in compression. In situ compression experiments showed 3um Al 2 O 3 particles fractured into pieces without observable plastic deformation in compression. Particle deformation behaviors will be used to inform Al 2 O 3 coating deposition parameters and particle - particle bonding in the consolidated Al 2 O 3 coatings.

More Details
50 Results
50 Results