Publications

11 Results
Skip to search filters

Encapsulant Void Breakdown Voltage Modeling & Experiments

Moore, Christopher H.; Clem, Paul G.; Biedermann, Laura B.; Miller, William K.; Stavig, Mark E.; Turner, Christian T.

For high voltage electrical devices, prevention of high voltage breakdown is critical for device function. Use of polymeric encapsulation such as epoxies is common, but these may include air bubbles or other voids of varying size. The present work aimed to model and experimentally determine the size dependence of breakdown voltage for voids in an epoxy matrix, as a step toward establishing size criteria for void screening. Effects were investigated experimentally for both one-dimensional metal/epoxy/air/epoxy/metal gap sizes from 50 μm to 10 mm, as well as spherical voids of 250 μm, 500 μm, 1 mm and 2 mm sizes. These experimental results were compared to modified Paschen curve and particle-in-cell discharge models; minimum breakdown voltages of 6 - 8.5 kV appeared to be predicted by 1D models and experiments, with minimum breakdown voltage for void sizes of 0.2 - 1 mm. In a limited set of 3D experiments on 250 μm, 500 μm, 1 mm and 2 mm voids within epoxy, the minimum breakdown voltages observed were 18.5 - 20 kV, for 500 μm void sizes. These experiments and models are aimed at providing initial size and voltage criteria for tolerable void sizes and expected discharge voltages to support design of encapsulated high voltage components.

More Details

Microsystem Enabled Photovoltaics

Nielson, Gregory N.; Cruz Campa, Jose L.; Okandan, Murat O.; Lentine, Anthony L.; Sweatt, W.C.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Jared, Bradley H.; Resnick, Paul J.; Cederberg, Jeffrey G.; Paap, Scott M.; Sanchez, Carlos A.; Biefeld, Robert M.; Langlois, Eric L.; Yang, Benjamin B.; Koleske, Daniel K.; Wierer, Jonathan J.; Miller, William K.; Elisberg, Brenton E.; Zamora, David J.; Luna, Ian L.; Saavedra, Michael P.; Alford, Charles A.; Ballance, Mark H.; Wiwi, Michael W.; Samora, S.; Chavez, Julie C.; Pipkin, Jennifer R.; Nguyen, Janet N.; Anderson, Ben A.; Gu, Tian G.; Agrawal, Gautum A.; Nelson, Jeffrey S.

Abstract not provided.

Interrogating adhesion using fiber Bragg grating sensing technology

Proceedings of SPIE - The International Society for Optical Engineering

Rasberry, Roger D.; Rohr, Garth R.; Miller, William K.; Udd, Eric; Blach, Noah T.; Davis, Ryan A.; Olson, Walter R.; Calkins, David C.; Roach, R.A.; Walsh, David S.; McElhanon, James R.

The assurance of the integrity of adhesive bonding at substrate interfaces is paramount to the longevity and sustainability of encapsulated components. Unfortunately, it is often difficult to non-destructively evaluate these materials to determine the adequacy of bonding after manufacturing and then later in service. A particularly difficult problem in this regard is the reliable detection/monitoring of regions of weak bonding that may result from poor adhesion or poor cohesive strength, or degradation in service. One promising and perhaps less explored avenue we have recently begun to investigate for this purpose centers on the use of (chirped) fiber Bragg grating sensing technology. In this scenario, a grating is patterned into a fiber optic such that a (broadband) spectral reflectance is observed. The sensor is highly sensitive to local and uniform changes across the length of the grating. Initial efforts to evaluate this approach for measuring adhesive bonding defects at substrate interfaces are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

More Details
11 Results
11 Results