Publications

Results 1–50 of 69
Skip to search filters

Maximum Interior Voltage and Magnetic Field Penetration Through a Ferromagnetic Layer

Warne, Larry K.; Chen, Kenneth C.; Johnson, William Arthur.

This report examines the problem of magnetic penetration of a conductive layer, including nonlinear ferromagnetic layers, excited by an electric current filament. The electric current filament is, for example, a nearby wire excited by a lightning strike. The internal electric field and external magnetic field are determined. Numerical results are compared to various analytical approximations to help understand the physics involved in the penetration.

More Details

Capacitive/Inductive Corrections for Numerical Implementation of Thin-Slot Transmission Line Models and Other Useful Formulas

Warne, Larry K.; Johnson, William Arthur.

Capacitance/inductance corrections for grid induced errors for a thin slot models are given for both one and four point testing on a rectangular grid for surface currents surrounding the slot. In addition a formula for translating from one equivalent radius to another is given for the thin-slot transmission line model. Additional formulas useful for this slot modeling are also given.

More Details

Eddy Current Power Dissipation at the Edge of a Thin Conductive Layer

Warne, Larry K.; Johnson, William Arthur.

A method used to solve the problem of water waves on a sloping beach is applied to a thin conducting half plane described by a thin layer impedance boundary condition. The solution for the electric field behavior near the edge is obtained and a simple fit for this behavior is given. This field is used to determine the correction to the impedance per unit length of a conductor due to a sharp edge. The results are applied to the strip conductor. The final appendix also discusses the solution to the dual-sided (impedance surface & perfect conductor surface) half plane problem.

More Details

Manufactured solutions for the method-of-moments implementation of the electric-field integral equation

Journal of Computational Physics

Freno, Brian A.; Matula, Neil M.; Johnson, William Arthur.

Though the method-of-moments implementation of the electric-field integral equation plays an important role in computational electromagnetics, it provides many code-verification challenges due to the different sources of numerical error. In this paper, we provide an approach through which we can apply the method of manufactured solutions to isolate and verify the solution-discretization error. We accomplish this by manufacturing both the surface current and the Green's function. Because the arising equations are poorly conditioned, we reformulate them as a set of constraints for an optimization problem that selects the solution closest to the manufactured solution. We demonstrate the effectiveness of this approach for cases with and without coding errors.

More Details

An Overview of Gemma FY2021 Verification Activities

Freno, Brian A.; Matula, Neil M.; Owen, Justin O.; Krueger, Aaron M.; Johnson, William Arthur.

Though the method-of-moments implementation of the electric-field integral equation plays an important role in computational electromagnetics, it provides many code-verification challenges due to the different sources of numerical error and their possible interactions. Matters are further complicated by singular integrals, which arise from the presence of a Green's function. In this report, we document our research to address these issues, as well as its implementation and testing in Gemma.

More Details

Characterization and integration of the singular test integrals in the method‐of‐moments implementation of the electric‐field integral equation

Engineering Analysis with Boundary Elements

Freno, Brian A.; Johnson, William Arthur.; Zinser, Brian; Wilton, Donald R.; Vipiana, Francesca; Campione, Salvatore

In this paper, we characterize the logarithmic singularities arising in the method of moments from the Green's function in integrals over the test domain, and we use two approaches for designing geometrically symmetric quadrature rules to integrate these singular integrands. These rules exhibit better convergence properties than quadrature rules for polynomials and, in general, lead to better accuracy with a lower number of quadrature points. We demonstrate their effectiveness for several examples encountered in both the scalar and vector potentials of the electric-field integral equation (singular, near-singular, and far interactions) as compared to the commonly employed polynomial scheme and the double Ma–Rokhlin–Wandzura (DMRW) rules, whose sample points are located asymmetrically within triangles.

More Details

Impact of time-varying loads on the programmable pulsed power driver called genesis

Digest of Technical Papers-IEEE International Pulsed Power Conference

Glover, Steven F.; Davis, Jean-Paul D.; Schneider, Larry X.; Reed, Kim W.; Pena, Gary P.; Hall, Clint A.; Hanshaw, Heath L.; Hickman, Randy J.; Hodge, K.C.; Lemke, Raymond W.; Lehr, J.M.; Lucero, D.J.; McDaniel, Dillon H.; Puissant, J.G.; Rudys, Joseph M.; Sceiford, Matthew S.; Tullar, S.J.; Van De Valde, D.M.; White, F.E.; Warne, Larry K.; Coats, Rebecca S.; Johnson, William Arthur.

The success of dynamic materials properties research at Sandia National Laboratories has led to research into ultra-low impedance, compact pulsed power systems capable of multi-MA shaped current pulses with rise times ranging from 220-500 ns. The Genesis design consists of two hundred and forty 200 kV, 80 kA modules connected in parallel to a solid dielectric disk transmission line and is capable of producing 280 kbar of magnetic pressure (>500 kbar pressure in high Z materials) in a 1.75 nH, 20 mm wide stripline load. Stripline loads operating under these conditions expand during the experiment resulting in a time-varying load that can impact the performance and lifetime of the system. This paper provides analysis of time-varying stripline loads and the impact of these loads on system performance. Further, an approach to reduce dielectric stress levels through active damping is presented as a means to increase system reliability and lifetime. © 2011 IEEE.

More Details

Modeling Braided Shields via multipole representations for the braid charges and currents

Proceedings - 2011 International Conference on Electromagnetics in Advanced Applications, ICEAA'11

Johnson, William Arthur.; Langston, William L.; Basilio, Lorena I.; Warne, Larry K.

A first principles calculation for the transfer capacitance of a Beldon cable is carried out by the use of filamentary constant, dipole, quadrupole, and octopole unknown charges placed at the center of each braid wire. Results are compared with full electrostatic simulations and a phenomenological model. © 2011 IEEE.

More Details

A negative-index metamaterial design based on metal-core, dielectric shell resonators

IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)

Basilio, L.I.; Warne, Larry K.; Langston, William L.; Johnson, William Arthur.; Sinclair, M.B.

In this paper a simple effective-media analysis (including higher-order multipoles) is used to design a single-resonator, negative-index design based on a metal-core, dielectric-shell (MCDS) unit cell. In addition to comparing the performance of the MCDS design to other core-shell negative-index designs, performance trade-offs resulting from the relative positioning of the electric and magnetic modal resonances in the MCDS design are also discussed. © 2011 IEEE.

More Details

Subcell models with application to split-ring resonators in the infrared

IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)

Johnson, William Arthur.; Warne, Larry K.; Basilio, Lorena I.; Langston, W.L.; Sinclair, M.B.

Simplified wire-type models for split-ring resonators (SRRs), both in free-space and above a dielectric half-space, are developed. The gap of the SRR in the wire model is accurately represented by including a lumped load which is the difference between the actual gap fringe capacitance and the capacitance inherent in the code wire kernel for a delta gap voltage source. The SRR arms are represented by generalized thin wires that have both an electric equivalent radius (for the rectangular conductor resting on a dielectric substrate) and a magnetic equivalent radius (for a rectangular conductor in free space, since the substrate is assumed to be nonmagnetic). In addition, an impedance per unit length (due to finite penetration of the fields into the metal) enters a local transmission line part of the generalized thin-wire algorithm. The results from the thin-wire subcell model are compared to full wave simulations of the arrays of SRR's. The full wave simulations require tens of thousands of unknowns to resolve the field penetration into the finite conductors for a single SRR, whereas the thin-wire model has good accuracy with only tens of unknowns. © 2011 IEEE.

More Details

Efficient calculation of 1-D periodic Green's functions for leaky-wave applications

Johnson, William Arthur.

In this paper an approach is described for the efficient computation of the mixed-potential scalar and dyadic Green's functions for a one-dimensional periodic (periodic along x direction) array of point sources embedded in a planar stratified structure. Suitable asymptotic extractions are performed on the slowly converging spectral series. The extracted terms are summed back through the Ewald method, modified and optimized to efficiently deal with all the different terms. The accelerated Green's functions allow for complex wavenumbers, and are thus suitable for application to leaky-wave antennas analysis. Suitable choices of the spectral integration paths are made in order to account for leakage effects and the proper/improper nature of the various space harmonics that form the 1-D periodic Green's function.

More Details

An effective media toolset for use in metamaterial design

Warne, Larry K.; Johnson, William Arthur.; Langston, William L.; Sinclair, Michael B.

This paper introduces an effective-media toolset that can be used for the design of metamaterial structures based on metallic components such as split-ring resonators and dipoles, as well as dielectric spherical resonators. For demonstration purposes the toolset will be used to generate infrared metamaterial designs, and the predicted performances will be verified with full-wave numerical simulations.

More Details

Transmissive infrared frequency selective surfaces and infrared antennas : final report for LDRD 105749

Davids, Paul D.; Cruz-Cabrera, A.A.; Basilio, Lorena I.; Wendt, J.R.; Kemme, S.A.; Johnson, William Arthur.; Loui, Hung L.

Plasmonic structures open up new opportunities in photonic devices, sometimes offering an alternate method to perform a function and sometimes offering capabilities not possible with standard optics. In this LDRD we successfully demonstrated metal coatings on optical surfaces that do not adversely affect the transmission of those surfaces at the design frequency. This technology could be applied as an RF noise blocking layer across an optical aperture or as a method to apply an electric field to an active electro-optic device without affecting optical performance. We also demonstrated thin optical absorbers using similar patterned surfaces. These infrared optical antennas show promise as a method to improve performance in mercury cadmium telluride detectors. Furthermore, these structures could be coupled with other components to lead to direct rectification of infrared radiation. This possibility leads to a new method for infrared detection and energy harvesting of infrared radiation.

More Details

Transient electromagnetic modeling of the ZR accelerator water convolute and stack

Digest of Technical Papers-IEEE International Pulsed Power Conference

Pasik, Michael F.; Coats, Rebecca S.; Johnson, William Arthur.; Elizondo-Decanini, Juan M.; Pointon, Timothy D.; Turner, C.D.; Bohnhoff, William J.; Lehr, J.M.; Savage, Mark E.

The ZR accelerator is a refurbishment of Sandia National Laboratories Z accelerator [1]. The ZR accelerator components were designed using electrostatic and circuit modeling tools. Transient electromagnetic modeling has played a complementary role in the analysis of ZR components [2]. In this paper we describe a 3D transient electromagnetic analysis of the ZR water convolute and stack using edge-based finite element techniques. © 2005 IEEE.

More Details

Model for resonant plasma probe

Johnson, William Arthur.; Coats, Rebecca S.; Jorgenson, Roy E.; Hebner, Gregory A.

This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

More Details

Joint voltages resulting from lightning currents

Warne, Larry K.; Johnson, William Arthur.; Chen, Kenneth C.; Merewether, Kimball O.

Simple formulas are given for the interior voltages appearing across bolted joints from exterior lightning currents. External slot and bolt inductances as well as internal slot and bolt diffusion effects are included. Both linear and ferromagnetic wall materials are considered. A useful simplification of the slot current distribution into linear stripline and cylindrical parts (near the bolts) allows the nonlinear voltages to be estimated in closed form.

More Details

Analysis of electromagnetic scattering by nearly periodic structures: an LDRD report

Jorgenson, Roy E.; Basilio, Lorena I.; Johnson, William Arthur.; Warne, Larry K.; Peters, D.W.

In this LDRD we examine techniques to analyze the electromagnetic scattering from structures that are nearly periodic. Nearly periodic could mean that one of the structure's unit cells is different from all the others--a defect. It could also mean that the structure is truncated, or butted up against another periodic structure to form a seam. Straightforward electromagnetic analysis of these nearly periodic structures requires us to grid the entire structure, which would overwhelm today's computers and the computers in the foreseeable future. In this report we will examine various approximations that allow us to continue to exploit some aspects of the structure's periodicity and thereby reduce the number of unknowns required for analysis. We will use the Green's Function Interpolation with a Fast Fourier Transform (GIFFT) to examine isolated defects both in the form of a source dipole over a meta-material slab and as a rotated dipole in a finite array of dipoles. We will look at the numerically exact solution of a one-dimensional seam. In order to solve a two-dimensional seam, we formulate an efficient way to calculate the Green's function of a 1d array of point sources. We next formulate ways of calculating the far-field due to a seam and due to array truncation based on both array theory and high-frequency asymptotic methods. We compare the high-frequency and GIFFT results. Finally, we use GIFFT to solve a simple, two-dimensional seam problem.

More Details

Measurement of the energy and power radiated by a pulsed blackbody x-ray source

Proposed for publication in Physical Review E.

Stygar, William A.; Leeper, Ramon J.; Mazarakis, Michael G.; McDaniel, Dillon H.; Mckenney, John M.; Mills, Jerry A.; Ruggles, Larry R.; Seamen, Johann F.; Simpson, Walter W.; Dropinski, Steven D.; Warne, Larry K.; York, Matthew W.; McGurn, John S.; Bryce, Edwin A.; Chandler, Gordon A.; Cuneo, M.E.; Johnson, William Arthur.; Jorgenson, Roy E.

We have developed a diagnostic system that measures the spectrally integrated (i.e. the total) energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP) diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38 x 38 square array of 10-{micro}m-diameter pinholes in a 50-{micro}m-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of {approx}1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999)RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode's output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation) the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and--on every shot--provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects) of the sensitivity of an array-diode combination is presented.

More Details

Numerical modeling of finite-size plasmon structures with enhanced optical transmission using EIGER

ICEAA 2005 - 9th International Conference on Electromagnetics in Advanced Applications and EESC 2005 - 11th European Electromagnetic Structures Conference

Basilio, L.I.; Johnson, William Arthur.; Jackson, D.R.; Wilton, D.R.

Simulation results demonstrating transmission enhancement through a sub-wavelength aperature in an infinite plasmon array are presented. The results are obtained using EIGER and are considered preliminary before proceeding to the simulation of finite-plasmon arrays.

More Details
Results 1–50 of 69
Results 1–50 of 69