Publications

145 Results
Skip to search filters

Resilience Enhancements through Deep Learning Yields

Eydenberg, Michael S.; Batsch-Smith, Lisa B.; Bice, Charles T.; Blakely, Logan; Bynum, Michael L.; Boukouvala, Fani B.; Castillo, Anya C.; Haddad, Joshua H.; Hart, William E.; Jalving, Jordan H.; Kilwein, Zachary A.; Laird, Carl D.; Skolfield, Joshua K.

This report documents the Resilience Enhancements through Deep Learning Yields (REDLY) project, a three-year effort to improve electrical grid resilience by developing scalable methods for system operators to protect the grid against threats leading to interrupted service or physical damage. The computational complexity and uncertain nature of current real-world contingency analysis presents significant barriers to automated, real-time monitoring. While there has been a significant push to explore the use of accurate, high-performance machine learning (ML) model surrogates to address this gap, their reliability is unclear when deployed in high-consequence applications such as power grid systems. Contemporary optimization techniques used to validate surrogate performance can exploit ML model prediction errors, which necessitates the verification of worst-case performance for the models.

More Details

Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) (Final Report)

Pinar, Ali P.; Tarman, Thomas D.; Swiler, Laura P.; Gearhart, Jared L.; Hart, Derek H.; Vugrin, Eric D.; Cruz, Gerardo C.; Arguello, Bryan A.; Geraci, Gianluca G.; Debusschere, Bert D.; Hanson, Seth T.; Outkin, Alexander V.; Thorpe, Jamie T.; Hart, William E.; Sahakian, Meghan A.; Gabert, Kasimir G.; Glatter, Casey J.; Johnson, Emma S.; Punla-Green, She?ifa P.

This report summarizes the activities performed as part of the Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) Grand Challenge LDRD project. We provide an overview of the research done in this project, including work on cyber emulation, uncertainty quantification, and optimization. We present examples of integrated analyses performed on two case studies: a network scanning/detection study and a malware command and control study. We highlight the importance of experimental workflows and list references of papers and presentations developed under this project. We outline lessons learned and suggestions for future work.

More Details

Science & Engineering of Cyber Security by Uncertainty Quantification and Rigorous Experimentation (SECURE) HANDBOOK

Pinar, Ali P.; Tarman, Thomas D.; Swiler, Laura P.; Gearhart, Jared L.; Hart, Derek H.; Vugrin, Eric D.; Cruz, Gerardo C.; Arguello, Bryan A.; Geraci, Gianluca G.; Debusschere, Bert D.; Hanson, Seth T.; Outkin, Alexander V.; Thorpe, Jamie T.; Hart, William E.; Sahakian, Meghan A.; Gabert, Kasimir G.; Glatter, Casey J.; Johnson, Emma S.; Punla-Green, She?ifa P.

Abstract not provided.

Large-scale Nonlinear Approaches for Inference of Reporting Dynamics and Unobserved SARS-CoV-2 Infections

Hart, William E.; Bynum, Michael L.; Laird, Carl L.; Siirola, John D.; Staid, Andrea S.

This work focuses on estimation of unknown states and parameters in a discrete-time, stochastic, SEIR model using reported case counts and mortality data. An SEIR model is based on classifying individuals with respect to their status in regards to the progression of the disease, where S is the number individuals who remain susceptible to the disease, E is the number of individuals who have been exposed to the disease but not yet infectious, I is the number of individuals who are currently infectious, and R is the number of recovered individuals. For convenience, we include in our notation the number of infections or transmissions, T, that represents the number of individuals transitioning from compartment S to compartment E over a particular interval. Similarly, we use C to represent the number of reported cases.

More Details

Spatio-temporal Estimates of Disease Transmission Parameters for COVID-19 with a Fully-Coupled, County-Level Model of the United States

Cummings, Derek A.; Hart, William E.; GarcĂ­a-Carreras, Bernardo G.; Lanning, Carl D.; Lessler, Justin L.; Staid, Andrea S.

Sandia National Laboratories has developed a capability to estimate parameters of epidemiological models from case reporting data to support responses to the COVID-19 pandemic. A differentiating feature of this work is the ability to simultaneously estimate county-specific disease transmission parameters in a nation-wide model that considers mobility between counties. The approach is focused on estimating parameters in a stochastic SEIR model that considers mobility between model patches (i.e., counties) as well as additional infectious compartments. The inference engine developed by Sandia includes (1) reconstruction and (2) transmission parameter inference. Reconstruction involves estimating current population counts within each of the compartments in a modified SEIR model from reported case data. Reconstruction produces input for the inference formulations, and it provides initial conditions that can be used in other modeling and planning efforts. Inference involves the solution of a large-scale optimization problem to estimate the time profiles for the transmission parameters in each county. These provide quantification of changes in the transmission parameter over time (e.g., due to impact of intervention strategies). This capability has been implemented in a Python-based software package, epi_inference, that makes extensive use of Pyomo [5] and IPOPT [10] to formulate and solve the inference formulations.

More Details

An Analysis of Multiple Contaminant Warning System Design Objectives for Sensor Placement Optimization in Water Distribution Networks

International Series in Operations Research and Management Science

Watson, Jean P.; Hart, William E.; Greenberg, Harvey J.; Phillips, Cynthia A.

A key strategy for protecting municipal water supplies is the use of sensors to detect the presence of contaminants in associated water distribution systems. Deploying a contamination warning system involves the placement of a limited number of sensors—placed in order to maximize the level of protection afforded. Researchers have proposed several models and algorithms for generating such placements, each optimizing with respect to a different design objective. The use of disparate design objectives raises several questions: (1) What is the relationship between optimal sensor placements for different design objectives? and (2) Is there any risk in focusing on specific design objectives? We model the sensor placement problem via a mixed-integer programming formulation of the well-known p-median problem from facility location theory to answer these questions. Our model can express a broad range of design objectives. Using three large test networks, we show that optimal solutions with respect to one design objective are often highly sub-optimal with respect to other design objectives. However, it is sometimes possible to construct solutions that are simultaneously near-optimal with respect to a range of design objectives. The design of contamination warning systems thus requires careful and simultaneous consideration of multiple, disparate design objectives.

More Details

Dynamic Multi-Sensor Multi-Mission Optimal Planning Tool

Valicka, Christopher G.; Rowe, Stephen R.; Zou, Simon Z.; Mitchell, Scott A.; Irelan, William R.; Pollard, Eric L.; Garcia, Deanna G.; Hackebeil, Gabriel A.; Staid, Andrea S.; Rintoul, Mark D.; Watson, Jean-Paul W.; Hart, William E.; Rathinam, Sivakumar R.; Ntaimo, Lewis N.

Remote sensing systems have firmly established a role in providing immense value to commercial industry, scientific exploration, and national security. Continued maturation of sensing technology has reduced the cost of deploying highly-capable sensors while at the same time increased reliance on the information these sensors can provide. The demand for time on these sensors is unlikely to diminish. Coordination of next-generation sensor systems, larger constellations of satellites, unmanned aerial vehicles, ground telescopes, etc. is prohibitively complex for existing heuristics- based scheduling techniques. The project was a two-year collaboration spanning multiple Sandia centers and included a partnership with Texas A&M University. We have developed algorithms and software for collection scheduling, remote sensor field-of-view pointing models, and bandwidth- constrained prioritization of sensor data. Our approach followed best practices from the operations research and computational geometry communities. These models provide several advantages over state of the art techniques. In particular, our approach is more flexible compared to heuristics that tightly couple models and solution techniques. First, our mixed-integer linear models afford a rig- orous analysis so that sensor planners can quantitatively describe a schedule relative to the best possible. Optimal or near-optimal schedules can be produced with commercial solvers in opera- tional run-times. These models can be modified and extended to incorporate different scheduling and resource constraints and objective function definitions. Further, we have extended these mod- els to proactively schedule sensors under weather and ad hoc collection uncertainty. This approach stands in contrast to existing deterministic schedulers which assume a single future weather or ad hoc collection scenario. The field-of-view pointing algorithm produces a mosaic with the fewest number of images required to fully cover a region of interest. The bandwidth-constrained al- gorithms find the highest priority information that can be transmitted. All of these are based on mixed-integer linear programs so that, in the future, collection scheduling, field-of-view, and band- width prioritization can be combined into a single problem. Experiments conducted using the de- veloped models, commercial solvers, and benchmark datasets have demonstrated that proactively scheduling against uncertainty regularly and significantly outperforms deterministic schedulers. Acknowledgement We would like to acknowledge John T. Feddema, Brian N. Post, John H. Ganter, and Swaroop Darbha for providing critical project stewardship and fruitful remote sensing utilization discus- sions. A special thanks to Mohamed S. Ebeida for his contributions to the development of the Maximal Poisson Sampling technique. We would also like to thank Kaarthik Sundar and Jianglei Qin for their significant scheduling algorithm and model development contributions to the project. The authors would like to acknowledge the Sandia LDRD program for their support of this work. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Cor- poration, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

More Details

Modeling Bilevel Programs in Pyomo

Hart, William E.; Watson, Jean-Paul W.; Siirola, John D.; Chen, Richard L.

We describe new capabilities for modeling bilevel programs within the Pyomo modeling software. These capabilities include new modeling components that represent subproblems, modeling transformations for re-expressing models with bilevel structure in other forms, and optimize bilevel programs with meta-solvers that apply transformations and then perform op- timization on the resulting model. We illustrate the breadth of Pyomo's modeling capabilities for bilevel programs, and we describe how Pyomo's meta-solvers can perform local and global optimization of bilevel programs.

More Details

PANTHER. Pattern ANalytics To support High-performance Exploitation and Reasoning

Czuchlewski, Kristina R.; Hart, William E.

Sandia has approached the analysis of big datasets with an integrated methodology that uses computer science, image processing, and human factors to exploit critical patterns and relationships in large datasets despite the variety and rapidity of information. The work is part of a three-year LDRD Grand Challenge called PANTHER (Pattern ANalytics To support High-performance Exploitation and Reasoning). To maximize data analysis capability, Sandia pursued scientific advances across three key technical domains: (1) geospatial-temporal feature extraction via image segmentation and classification; (2) geospatial-temporal analysis capabilities tailored to identify and process new signatures more efficiently; and (3) domain- relevant models of human perception and cognition informing the design of analytic systems. Our integrated results include advances in geographical information systems (GIS) in which we discover activity patterns in noisy, spatial-temporal datasets using geospatial-temporal semantic graphs. We employed computational geometry and machine learning to allow us to extract and predict spatial-temporal patterns and outliers from large aircraft and maritime trajectory datasets. We automatically extracted static and ephemeral features from real, noisy synthetic aperture radar imagery for ingestion into a geospatial-temporal semantic graph. We worked with analysts and investigated analytic workflows to (1) determine how experiential knowledge evolves and is deployed in high-demand, high-throughput visual search workflows, and (2) better understand visual search performance and attention. Through PANTHER, Sandia's fundamental rethinking of key aspects of geospatial data analysis permits the extraction of much richer information from large amounts of data. The project results enable analysts to examine mountains of historical and current data that would otherwise go untouched, while also gaining meaningful, measurable, and defensible insights into overlooked relationships and patterns. The capability is directly relevant to the nation's nonproliferation remote-sensing activities and has broad national security applications for military and intelligence- gathering organizations.

More Details

Modeling Mathematical Programs with Equilibrium Constraints in Pyomo

Hart, William E.; Siirola, John D.

We describe new capabilities for modeling MPEC problems within the Pyomo modeling software. These capabilities include new modeling components that represent complementar- ity conditions, modeling transformations for re-expressing models with complementarity con- ditions in other forms, and meta-solvers that apply transformations and numeric optimization solvers to optimize MPEC problems. We illustrate the breadth of Pyomo's modeling capabil- ities for MPEC problems, and we describe how Pyomo's meta-solvers can perform local and global optimization of MPEC problems.

More Details

Water Security Toolkit User Manual Version 1.2

Klise, Katherine A.; Siirola, John D.; Hart, David B.; Hart, William E.; Phillips, Cynthia A.; Haxton, Terranna H.; Murray, Regan M.; Janke, Robert J.; Taxon, Thomas T.; Laird, Carl L.; Seth, Arpan S.; Hackebeil, Gabriel H.; McGee, Shawn M.; Mann, Angelica M.

The Water Security Toolkit (WST) is a suite of open source software tools that can be used by water utilities to create response strategies to reduce the impact of contamination in a water distribution network . WST includes hydraulic and water quality modeling software , optimizati on methodologies , and visualization tools to identify: (1) sensor locations to detect contamination, (2) locations in the network in which the contamination was introduced, (3) hydrants to remove contaminated water from the distribution system, (4) locations in the network to inject decontamination agents to inactivate, remove, or destroy contaminants, (5) locations in the network to take grab sample s to help identify the source of contamination and (6) valves to close in order to isolate contaminate d areas of the network. This user manual describes the different components of WST , along w ith examples and case studies. License Notice The Water Security Toolkit (WST) v.1.2 Copyright c 2012 Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of this work by or on behalf of the U.S. government. This software is distributed under the Revised BSD License (see below). In addition, WST leverages a variety of third-party software packages, which have separate licensing policies: Acro Revised BSD License argparse Python Software Foundation License Boost Boost Software License Coopr Revised BSD License Coverage BSD License Distribute Python Software Foundation License / Zope Public License EPANET Public Domain EPANET-ERD Revised BSD License EPANET-MSX GNU Lesser General Public License (LGPL) v.3 gcovr Revised BSD License GRASP AT&T Commercial License for noncommercial use; includes randomsample and sideconstraints executable files LZMA SDK Public Domain nose GNU Lesser General Public License (LGPL) v.2.1 ordereddict MIT License pip MIT License PLY BSD License PyEPANET Revised BSD License Pyro MIT License PyUtilib Revised BSD License PyYAML MIT License runpy2 Python Software Foundation License setuptools Python Software Foundation License / Zope Public License six MIT License TinyXML zlib License unittest2 BSD License Utilib Revised BSD License virtualenv MIT License Vol Common Public License vpykit Revised BSD License Additionally, some precompiled WST binary distributions might bundle other third-party executables files: Coliny Revised BSD License (part of Acro project) Dakota GNU Lesser General Public License (LGPL) v.2.1 PICO Revised BSD License (part of Acro project) i Revised BSD License Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Sandia National Laboratories nor Sandia Corporation nor the names of its con- tributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM- PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD- ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ii Acknowledgements This work was supported by the U.S. Environmental Protection Agency through its Office of Research and Development (Interagency Agreement # DW8992192801). The material in this document has been subject to technical and policy review by the U.S. EPA, and approved for publication. The views expressed by individual authors, however, are their own, and do not necessarily reflect those of the U.S. Environmental Protection Agency. Mention of trade names, products, or services does not convey official U.S. EPA approval, endorsement, or recommendation. The Water Security Toolkit is an extension of the Threat Ensemble Vulnerability Assessment-Sensor Place- ment Optimization Tool (TEVA-SPOT), which was also developed with funding from the U.S. Environ- mental Protection Agency through its Office of Research and Development (Interagency Agreement # DW8992192801). The authors acknowledge the following individuals for their contributions to the devel- opment of TEVA-SPOT: Jonathan Berry (Sandia National Laboratories), Erik Boman (Sandia National Laboratories), Lee Ann Riesen (Sandia National Laboratories), James Uber (University of Cincinnati), and Jean-Paul Watson (Sandia National Laboratories). iii Acronyms ATUS American Time-Use Survey BLAS Basic linear algebra sub-routines CFU Colony-forming unit CVAR Conditional value at risk CWS Contamination warning system EA Evolutionary algorithm EDS Event detection system EPA U.S. Environmental Protection Agency EC Extent of Contamination ERD EPANET results database file GLPK GNU Linear Programming Kit GRASP Greedy randomized adaptive sampling process HEX Hexadecimal HTML HyperText markup language INP EPANET input file LP Linear program MC Mass consumed MILP Mixed integer linear program MIP Mixed integer program MSX Multi-species extension for EPANET NFD Number of failed detections NS Number of sensors NZD Non-zero demand PD Population dosed PE Population exposed PK Population killed TAI Threat assessment input file TCE Tailed-conditioned expectation TD Time to detection TEC Timed extent of contamination TEVA Threat ensemble vulnerability assessment TSB Tryptic soy broth TSG Threat scenario generation file TSI Threat simulation input file VAR Value at risk VC Volume consumed WST Water Security Toolkit YML YAML configuration file format for WST iv Symbols Notation Definition Example { , } set brackets { 1,2,3 } means a set containing the values 1,2, and 3. [?] is an element of s [?] S means that s is an element of the set S . [?] for all s = 1 [?] s [?] S means that the statement s = 1 is true for all s in set S . P summation P n i =1 s i means s 1 + s 2 + * * * + s n . \ set minus S \ T means the set that contains all those elements of S that are not in set T . %7C given %7C is used to define conditional probability. P ( s %7C t ) means the prob- ability of s occurring given that t occurs. %7C ... %7C cardinality Cardinality of a set is the number of elements of the set. If set S = { 2,4,6 } , then %7C S %7C = 3. v

More Details

Formulating and analyzing multi-stage sensor placement problems

Water Distribution Systems Analysis 2010 - Proceedings of the 12th International Conference, WDSA 2010

Watson, Jean-Paul W.; Hart, William E.; Woodruff, David L.; Murray, Regan

The optimization of sensor placements is a key aspect of the design of contaminant warning systems for automatically detecting contaminants in water distribution systems. Although researchers have generally assumed that all sensors are placed at the same time, in practice sensor networks will likely grow and evolve over time. For example, limitations for a water utility's budget may dictate an staged, incremental deployment of sensors over many years. We describe optimization formulations of multi-stage sensor placement problems. The objective of these formulations includes an explicit trade-off between the value of the initially deployed and final sensor networks. This trade-off motivates the deployment of sensors in initial stages of the deployment schedule, even though these choices typically lead to a solution that is suboptimal when compared to placing all sensors at once. These multi-stage sensor placement problems can be represented as mixed-integer programs, and we illustrate the impact of this trade-off using standard commercial solvers. We also describe a multi-stage formulation that models budget uncertainty, expressed as a tree of potential budget scenarios through time. Budget uncertainty is used to assess and hedge against risks due to a potentially incomplete deployment of a planned sensor network. This formulation is a multi-stage stochastic mixed-integer program, which are notoriously difficult to solve. We apply standard commercial solvers to small-scale test problems, enabling us to effectively analyze multi-stage sensor placement problems subject to budget uncertainties, and assess the impact of accounting for such uncertainty relative to a deterministic multi-stage model. © 2012 ASCE.

More Details

Optimal determination of grab sample locations and source inversion in large-scale water distribution systems

Water Distribution Systems Analysis 2010 - Proceedings of the 12th International Conference, WDSA 2010

Wong, Angelica; Young, James; Laird, Carl D.; Hart, William E.; Mckenna, Sean A.

We present a mixed-integer linear programming formulation to determine optimal locations for manual grab sampling after the detection of contaminants in a water distribution system. The formulation selects optimal manual grab sample locations that maximize the total pair-wise distinguishability of candidate contamination events. Given an initial contaminant detection location, a source inversion is performed that will eliminate unlikely events resulting in a much smaller set of candidate contamination events. We then propose a cyclical process where optimal grab samples locations are determined and manual grab samples taken. Relying only on YES/NO indicators of the presence of contaminant, source inversion is performed to reduce the set of candidate contamination events. The process is repeated until the number of candidate events is sufficiently small. Case studies testing this process are presented using water network models ranging from 4 to approximately 13000 nodes. The results demonstrate that the contamination event can be identified within a remarkably small number of sampling cycles using very few sampling teams. Furthermore, solution times were reasonable making this formulation suitable for real-time settings. © 2012 ASCE.

More Details

Optimization of large-scale heterogeneous system-of-systems models

Gray, Genetha A.; Hart, William E.; Hough, Patricia D.; Parekh, Ojas D.; Phillips, Cynthia A.; Siirola, John D.; Swiler, Laura P.; Watson, Jean-Paul W.

Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.

More Details

A Stochastic Programming Formulation for Disinfectant Booster Station Placement to Protect Large-Scale Water Distribution Systems

Computer Aided Chemical Engineering

Hackebeil, Gabriel A.; Mann, Angelica V.; Hart, William E.; Klise, Katherine A.; Laird, Carl D.

We present a methodology for optimally locating disinfectant booster stations for response to contamination events in water distribution systems. A stochastic programming problem considering uncertainty in both the location and time of the contamination event is formulated resulting in an extensive form that is equivalent to the weighted maximum coverage problem. Although the original full-space problem is intractably large, we show a series of reductions that reduce the size of the problem by five orders of magnitude and allow solutions of the optimal placement problem for realistically sized water network models. © 2012 Elsevier B.V.

More Details

Pyomo: Modeling and solving mathematical programs in Python

Mathematical Programming Computation

Hart, William E.; Watson, Jean P.; Woodruff, David L.

We describe Pyomo, an open source software package for modeling and solving mathematical programs in Python. Pyomo can be used to define abstract and concrete problems, create problem instances, and solve these instances with standard open-source and commercial solvers. Pyomo provides a capability that is commonly associated with algebraic modeling languages such as AMPL, AIMMS, and GAMS. In contrast, Pyomo's modeling objects are embedded within a full-featured highlevel programming language with a rich set of supporting libraries. Pyomo leverages the capabilities of the Coopr software library, which together with Pyomo is part of IBM's COIN-OR open-source initiative for operations research software. Coopr integrates Python packages for defining optimizers, modeling optimization applications, and managing computational experiments. Numerous examples illustrating advanced scripting applications are provided. © Springer and Mathematical Optimization Society 2011.

More Details

Minimize impact or maximize benefit: The role of objective function in approximately optimizing sensor placement for municipal water distribution networks

World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability - Proceedings of the 2011 World Environmental and Water Resources Congress

Hart, William E.; Murray, Regan; Phillips, Cynthia A.

We consider the design of a sensor network to serve as an early warning system against a potential suite of contamination incidents. Given any measure for evaluating the quality of a sensor placement, there are two ways to model the objective. One is to minimize the impact or damage to the network, the other is to maximize the reduction in impact compared to the network without sensors. These objectives are the same when the problem is solved optimally. But when given equally-good approximation algorithms for each of this pair of complementary objectives, either one might be a better choice. The choice generally depends upon the quality of the approximation algorithms, the impact when there are no sensors, and the number of sensors available. We examine when each objective is better than the other by examining multiple real world networks. When assuming perfect sensors, minimizing impact is frequently superior for virulent contaminants. But when there are long response delays, or it is very difficult to reduce impact, maximizing impact reduction may be better. © 2011 ASCE.

More Details

Sensor placement for municipal water networks

Phillips, Cynthia A.; Boman, Erik G.; Carr, Robert D.; Hart, William E.; Berry, Jonathan W.; Watson, Jean-Paul W.; Hart, David B.; Mckenna, Sean A.; Riesen, Lee A.

We consider the problem of placing a limited number of sensors in a municipal water distribution network to minimize the impact over a given suite of contamination incidents. In its simplest form, the sensor placement problem is a p-median problem that has structure extremely amenable to exact and heuristic solution methods. We describe the solution of real-world instances using integer programming or local search or a Lagrangian method. The Lagrangian method is necessary for solution of large problems on small PCs. We summarize a number of other heuristic methods for effectively addressing issues such as sensor failures, tuning sensors based on local water quality variability, and problem size/approximation quality tradeoffs. These algorithms are incorporated into the TEVA-SPOT toolkit, a software suite that the US Environmental Protection Agency has used and is using to design contamination warning systems for US municipal water systems.

More Details

Pyomo : Python Optimization Modeling Objects

Siirola, John D.; Watson, Jean-Paul W.; Hart, William E.

The Python Optimization Modeling Objects (Pyomo) package [1] is an open source tool for modeling optimization applications within Python. Pyomo provides an objected-oriented approach to optimization modeling, and it can be used to define symbolic problems, create concrete problem instances, and solve these instances with standard solvers. While Pyomo provides a capability that is commonly associated with algebraic modeling languages such as AMPL, AIMMS, and GAMS, Pyomo's modeling objects are embedded within a full-featured high-level programming language with a rich set of supporting libraries. Pyomo leverages the capabilities of the Coopr software library [2], which integrates Python packages (including Pyomo) for defining optimizers, modeling optimization applications, and managing computational experiments. A central design principle within Pyomo is extensibility. Pyomo is built upon a flexible component architecture [3] that allows users and developers to readily extend the core Pyomo functionality. Through these interface points, extensions and applications can have direct access to an optimization model's expression objects. This facilitates the rapid development and implementation of new modeling constructs and as well as high-level solution strategies (e.g. using decomposition- and reformulation-based techniques). In this presentation, we will give an overview of the Pyomo modeling environment and model syntax, and present several extensions to the core Pyomo environment, including support for Generalized Disjunctive Programming (Coopr GDP), Stochastic Programming (PySP), a generic Progressive Hedging solver [4], and a tailored implementation of Bender's Decomposition.

More Details

Installing python software packages : the good, the bad and the ugly

Hart, William E.

These slides describe different strategies for installing Python software. Although I am a big fan of Python software development, robust strategies for software installation remains a challenge. This talk describes several different installation scenarios. The Good: the user has administrative privileges - Installing on Windows with an installer executable, Installing with Linux application utility, Installing a Python package from the PyPI repository, and Installing a Python package from source. The Bad: the user does not have administrative privileges - Using a virtual environment to isolate package installations, and Using an installer executable on Windows with a virtual environment. The Ugly: the user needs to install an extension package from source - Installing a Python extension package from source, and PyCoinInstall - Managing builds for Python extension packages. The last item referring to PyCoinInstall describes a utility being developed for the COIN-OR software, which is used within the operations research community. COIN-OR includes a variety of Python and C++ software packages, and this script uses a simple plug-in system to support the management of package builds and installation.

More Details

Integrating event detection system operation characteristics into sensor placement optimization

Hart, David B.; Hart, William E.; Mckenna, Sean A.; Phillips, Cynthia A.

We consider the problem of placing sensors in a municipal water network when we can choose both the location of sensors and the sensitivity and specificity of the contamination warning system. Sensor stations in a municipal water distribution network continuously send sensor output information to a centralized computing facility, and event detection systems at the control center determine when to signal an anomaly worthy of response. Although most sensor placement research has assumed perfect anomaly detection, signal analysis software has parameters that control the tradeoff between false alarms and false negatives. We describe a nonlinear sensor placement formulation, which we heuristically optimize with a linear approximation that can be solved as a mixed-integer linear program. We report the results of initial experiments on a real network and discuss tradeoffs between early detection of contamination incidents, and control of false alarms.

More Details

Formulation and optimization of robust sensor placement problems for drinking water contamination warning systems

Journal of Infrastructure Systems

Watson, Jean P.; Murray, Regan; Hart, William E.

The sensor placement problem in contamination warning system design for municipal water distribution networks involves maximizing the protection level afforded by limited numbers of sensors, typically quantified as the expected impact of a contamination event; the issue of how to mitigate against high-consequence events is either handled implicitly or ignored entirely. Consequently, expected-case sensor placements run the risk of failing to protect against high-consequence 9/11-style attacks. In contrast, robust sensor placements address this concern by focusing strictly on high-consequence events and placing sensors to minimize the impact of these events. We introduce several robust variations of the sensor placement problem, distinguished by how they quantify the potential damage due to high-consequence events. We explore the nature of robust versus expected-case sensor placements on three real-world large-scale distribution networks. We find that robust sensor placements can yield large reductions in the number and magnitude of high-consequence events, with only modest increases in expected impact. The ability to trade-off between robust and expected-case impacts is a key unexplored dimension in contamination warning system design. © 2009 ASCE.

More Details

Analysis of micromixers and biocidal coatings on water-treatment membranes to minimize biofouling

Altman, Susan J.; Clem, Paul G.; Cook, Adam W.; Hart, William E.; Ho, Clifford K.; Jones, Howland D.; Sun, Amy C.; Webb, Stephen W.

Biofouling, the unwanted growth of biofilms on a surface, of water-treatment membranes negatively impacts in desalination and water treatment. With biofouling there is a decrease in permeate production, degradation of permeate water quality, and an increase in energy expenditure due to increased cross-flow pressure needed. To date, a universal successful and cost-effect method for controlling biofouling has not been implemented. The overall goal of the work described in this report was to use high-performance computing to direct polymer, material, and biological research to create the next generation of water-treatment membranes. Both physical (micromixers - UV-curable epoxy traces printed on the surface of a water-treatment membrane that promote chaotic mixing) and chemical (quaternary ammonium groups) modifications of the membranes for the purpose of increasing resistance to biofouling were evaluated. Creation of low-cost, efficient water-treatment membranes helps assure the availability of fresh water for human use, a growing need in both the U. S. and the world.

More Details

Decision support for integrated water-energy planning

Tidwell, Vincent C.; Kobos, Peter H.; Malczynski, Leonard A.; Hart, William E.; Castillo, Cesar R.

Currently, electrical power generation uses about 140 billion gallons of water per day accounting for over 39% of all freshwater withdrawals thus competing with irrigated agriculture as the leading user of water. Coupled to this water use is the required pumping, conveyance, treatment, storage and distribution of the water which requires on average 3% of all electric power generated. While water and energy use are tightly coupled, planning and management of these fundamental resources are rarely treated in an integrated fashion. Toward this need, a decision support framework has been developed that targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. The framework integrates analysis and optimization capabilities to identify trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., national, state, county, watershed, NERC region). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. Ultimately, this open and interactive modeling framework provides a tool for evaluating competing policy and technical options relevant to the energy-water nexus.

More Details

The TEVA-SPOT toolkit for drinking water contaminant warning system design

World Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008

Hart, William E.; Berry, Jonathan W.; Boman, Erik G.; Murray, Regan; Phillips, Cynthia A.; Riesen, Lee A.; Watson, Jean-Paul W.

We present the TEVA-SPOT Toolkit, a sensor placement optimization tool developed within the USEPA TEVA program. The TEVA-SPOT Toolkit provides a sensor placement framework that facilitates research in sensor placement optimization and enables the practical application of sensor placement solvers to real-world CWS design applications. This paper provides an overview of its key features, and then illustrates how this tool can be flexibly applied to solve a variety of different types of sensor placement problems. © 2008 ASCE.

More Details

Limited-memory techniques for sensor placement in water distribution networks

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Hart, William E.; Berry, Jonathan W.; Boman, Erik G.; Phillips, Cynthia A.; Riesen, Lee A.; Watson, Jean-Paul W.

The practical utility of optimization technologies is often impacted by factors that reflect how these tools are used in practice, including whether various real-world constraints can be adequately modeled, the sophistication of the analysts applying the optimizer, and related environmental factors (e.g. whether a company is willing to trust predictions from computational models). Other features are less appreciated, but of equal importance in terms of dictating the successful use of optimization. These include the scale of problem instances, which in practice drives the development of approximate solution techniques, and constraints imposed by the target computing platforms. End-users often lack state-of-the-art computers, and thus runtime and memory limitations are often a significant, limiting factor in algorithm design. When coupled with large problem scale, the result is a significant technological challenge. We describe our experience developing and deploying both exact and heuristic algorithms for placing sensors in water distribution networks to mitigate against damage due intentional or accidental introduction of contaminants. The target computing platforms for this application have motivated limited-memory techniques that can optimize large-scale sensor placement problems. © 2008 Springer Berlin Heidelberg.

More Details

Optimal monitoring location selection for water quality issues

Restoring Our Natural Habitat - Proceedings of the 2007 World Environmental and Water Resources Congress

Boccelli, Dominic L.; Hart, William E.

Recently, extensive focus has been placed on determining the optimal locations of sensors within a distribution system to minimize the impact on public health from intentional intrusion events. Modified versions of these tools may have additional benefits for determining monitoring locations for other more common objectives associated with distribution systems. A modified Sensor Placement Optimization Tool (SPOT) is presented that can be used for satisfying more generic location problems such as determining monitoring locations for tracer tests or disinfectant byproduct sampling. The utility for the modified SPOT algorithm is discussed with respect to implementing a distribution system field-scale tracer study. © 2007 ASCE.

More Details

LDRD final report : robust analysis of large-scale combinatorial applications

Hart, William E.; Carr, Robert D.; Phillips, Cynthia A.; Watson, Jean-Paul W.

Discrete models of large, complex systems like national infrastructures and complex logistics frameworks naturally incorporate many modeling uncertainties. Consequently, there is a clear need for optimization techniques that can robustly account for risks associated with modeling uncertainties. This report summarizes the progress of the Late-Start LDRD 'Robust Analysis of Largescale Combinatorial Applications'. This project developed new heuristics for solving robust optimization models, and developed new robust optimization models for describing uncertainty scenarios.

More Details

Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 developers manual

Brown, Shannon L.; Griffin, Joshua G.; Hough, Patricia D.; Kolda, Tamara G.; Martinez-Canales, Monica L.; Williams, Pamela J.; Adams, Brian M.; Dunlavy, Daniel D.; Swiler, Laura P.; Giunta, Anthony A.; Hart, William E.; Watson, Jean-Paul W.; Eddy, John P.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.

More Details

DAKOTA, a multilevel parellel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 uers's manual

Swiler, Laura P.; Giunta, Anthony A.; Hart, William E.; Watson, Jean-Paul W.; Eddy, John P.; Griffin, Joshua G.; Hough, Patricia D.; Kolda, Tamara G.; Martinez-Canales, Monica L.; Williams, Pamela J.; Eldred, Michael S.; Brown, Shannon L.; Adams, Brian M.; Dunlavy, Daniel D.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the DAKOTA software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

More Details

DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 reference manual

Brown, Shannon L.; Griffin, Joshua G.; Hough, Patricia D.; Kolda, Tamara G.; Martinez-Canales, Monica L.; Williams, Pamela J.; Adams, Brian M.; Dunlavy, Daniel D.; Swiler, Laura P.; Giunta, Anthony A.; Hart, William E.; Watson, Jean-Paul W.; Eddy, John P.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

More Details

Deciphering the genetic regulatory code using an inverse error control coding framework

May, Elebeoba E.; Johnston, Anna M.; Watson, Jean-Paul W.; Hart, William E.; Rintoul, Mark D.

We have found that developing a computational framework for reconstructing error control codes for engineered data and ultimately for deciphering genetic regulatory coding sequences is a challenging and uncharted area that will require advances in computational technology for exact solutions. Although exact solutions are desired, computational approaches that yield plausible solutions would be considered sufficient as a proof of concept to the feasibility of reverse engineering error control codes and the possibility of developing a quantitative model for understanding and engineering genetic regulation. Such evidence would help move the idea of reconstructing error control codes for engineered and biological systems from the high risk high payoff realm into the highly probable high payoff domain. Additionally this work will impact biological sensor development and the ability to model and ultimately develop defense mechanisms against bioagents that can be engineered to cause catastrophic damage. Understanding how biological organisms are able to communicate their genetic message efficiently in the presence of noise can improve our current communication protocols, a continuing research interest. Towards this end, project goals include: (1) Develop parameter estimation methods for n for block codes and for n, k, and m for convolutional codes. Use methods to determine error control (EC) code parameters for gene regulatory sequence. (2) Develop an evolutionary computing computational framework for near-optimal solutions to the algebraic code reconstruction problem. Method will be tested on engineered and biological sequences.

More Details

Validation and assessment of integer programming sensor placement models

Berry, Jonathan W.; Hart, William E.; Phillips, Cynthia A.; Watson, Jean-Paul W.

We consider the accuracy of predictions made by integer programming (IP) models of sensor placement for water security applications. We have recently shown that IP models can be used to find optimal sensor placements for a variety of different performance criteria (e.g. minimize health impacts and minimize time to detection). However, these models make a variety of simplifying assumptions that might bias the final solution. We show that our IP modeling assumptions are similar to models developed for other sensor placement methodologies, and thus IP models should give similar predictions. However, this discussion highlights that there are significant differences in how temporal effects are modeled for sensor placement. We describe how these modeling assumptions can impact sensor placements.

More Details

Water quality sensor placement in water networks with budget constraints

Berry, Jonathan W.; Hart, William E.; Phillips, Cynthia A.

In recent years, several integer programming models have been proposed to place sensors in municipal water networks in order to detect intentional or accidental contamination. Although these initial models assumed that it is equally costly to place a sensor at any place in the network, there clearly are practical cost constraints that would impact a sensor placement decision. Such constraints include not only labor costs but also the general accessibility of a sensor placement location. In this paper, we extend our integer program to explicitly model the cost of sensor placement. We partition network locations into groups of varying placement cost, and we consider the public health impacts of contamination events under varying budget constraints. Thus our models permit cost/benefit analyses for differing sensor placement designs. As a control for our optimization experiments, we compare the set of sensor locations selected by the optimization models to a set of manually-selected sensor locations.

More Details

Sensor placement in municipal water networks

Proposed for publication in the Journal of Water Resources Planning and Management.

Hart, William E.; Phillips, Cynthia A.; Berry, Jonathan W.; Watson, Jean-Paul W.

We present a model for optimizing the placement of sensors in municipal water networks to detect maliciously injected contaminants. An optimal sensor configuration minimizes the expected fraction of the population at risk. We formulate this problem as a mixed-integer program, which can be solved with generally available solvers. We find optimal sensor placements for three test networks with synthetic risk and population data. Our experiments illustrate that this formulation can be solved relatively quickly and that the predicted sensor configuration is relatively insensitive to uncertainties in the data used for prediction.

More Details

A filter-based evolutionary algorithm for constrained optimization

Proposed for publication in Evolutionary Computations.

Hart, William E.

We introduce a filter-based evolutionary algorithm (FEA) for constrained optimization. The filter used by an FEA explicitly imposes the concept of dominance on a partially ordered solution set. We show that the algorithm is provably robust for both linear and nonlinear problems and constraints. FEAs use a finite pattern of mutation offsets, and our analysis is closely related to recent convergence results for pattern search methods. We discuss how properties of this pattern impact the ability of an FEA to converge to a constrained local optimum.

More Details

Detection and reconstruction of error control codes for engineered and biological regulatory systems

May, Elebeoba E.; May, Elebeoba E.; Johnston, Anna M.; Hart, William E.; Watson, Jean-Paul W.; Pryor, Richard J.; Rintoul, Mark D.

A fundamental challenge for all communication systems, engineered or living, is the problem of achieving efficient, secure, and error-free communication over noisy channels. Information theoretic principals have been used to develop effective coding theory algorithms to successfully transmit information in engineering systems. Living systems also successfully transmit biological information through genetic processes such as replication, transcription, and translation, where the genome of an organism is the contents of the transmission. Decoding of received bit streams is fairly straightforward when the channel encoding algorithms are efficient and known. If the encoding scheme is unknown or part of the data is missing or intercepted, how would one design a viable decoder for the received transmission? For such systems blind reconstruction of the encoding/decoding system would be a vital step in recovering the original message. Communication engineers may not frequently encounter this situation, but for computational biologists and biotechnologist this is an immediate challenge. The goal of this work is to develop methods for detecting and reconstructing the encoder/decoder system for engineered and biological data. Building on Sandia's strengths in discrete mathematics, algorithms, and communication theory, we use linear programming and will use evolutionary computing techniques to construct efficient algorithms for modeling the coding system for minimally errored engineered data stream and genomic regulatory DNA and RNA sequences. The objective for the initial phase of this project is to construct solid parallels between biological literature and fundamental elements of communication theory. In this light, the milestones for FY2003 were focused on defining genetic channel characteristics and providing an initial approximation for key parameters, including coding rate, memory length, and minimum distance values. A secondary objective addressed the question of determining similar parameters for a received, noisy, error-control encoded data set. In addition to these goals, we initiated exploration of algorithmic approaches to determine if a data set could be approximated with an error-control code and performed initial investigations into optimization based methodologies for extracting the encoding algorithm given the coding rate of an encoded noise-free and noisy data stream.

More Details

A comparison of computational methods for the maximum contact map overlap of protein pairs

Proposed for publication in INFORMS J on Computing.

Hart, William E.; Hart, William E.; Carr, Robert D.

The maximum contact map overlap (MAX-CMO) between a pair of protein structures can be used as a measure of protein similarity. It is a purely topological measure and does not depend on the sequence of the pairs involved in the comparison. More importantly, the MAX-CMO present a very favorable mathematical structure which allows the formulation of integer, linear and Lagrangian models that can be used to obtain guarantees of optimality. It is not the intention of this paper to discuss the mathematical properties of MAX-CMO in detail as this has been dealt elsewhere. In this paper we compare three algorithms that can be used to obtain maximum contact map overlaps between protein structures. We will point to the weaknesses and strengths of each one. It is our hope that this paper will encourage researchers to develop new and improve methods for protein comparison based on MAX-CMO.

More Details

Convergence of a discretized self-adaptive evolutionary algorithm on multi-dimensional problems

Proposed for publication in IEEE Transactions on Evolutionary Computation.

Hart, William E.; Hart, William E.; Delaurentis, John M.

We consider the convergence properties of a non-elitist self-adaptive evolutionary strategy (ES) on multi-dimensional problems. In particular, we apply our recent convergence theory for a discretized (1,{lambda})-ES to design a related (1,{lambda})-ES that converges on a class of seperable, unimodal multi-dimensional problems. The distinguishing feature of self-adaptive evolutionary algorithms (EAs) is that the control parameters (like mutation step lengths) are evolved by the evolutionary algorithm. Thus the control parameters are adapted in an implicit manner that relies on the evolutionary dynamics to ensure that more effective control parameters are propagated during the search. Self-adaptation is a central feature of EAs like evolutionary stategies (ES) and evolutionary programming (EP), which are applied to continuous design spaces. Rudolph summarizes theoretical results concerning self-adaptive EAs and notes that the theoretical underpinnings for these methods are essentially unexplored. In particular, convergence theories that ensure convergence to a limit point on continuous spaces have only been developed by Rudolph, Hart, DeLaurentis and Ferguson, and Auger et al. In this paper, we illustrate how our analysis of a (1,{lambda})-ES for one-dimensional unimodal functions can be used to ensure convergence of a related ES on multidimensional functions. This (1,{lambda})-ES randomly selects a search dimension in each iteration, along which points generated. For a general class of separable functions, our analysis shows that the ES searches along each dimension independently, and thus this ES converges to the (global) minimum.

More Details

SGOPT User Manual Version 2.0

Hart, William E.

This document provides a user manual for the SGOPT software library. SGOPT is a C++ class library for nonlinear optimization. This library uses an object-oriented design that allows the software to be extended to a new problem domains. Furthermore, this library was designed to that the interface is straightforward while providing flexibility to allow new algorithms to be easily added to this library. The SGOPT library has been used by several software projects at Sandia, and it is integrated into the DAKOTA design and analysis toolkit. This report provides a high-level description of the optimization algorithms provided by SGOPT and describes the C++ class hierarchy in which they are implemented. Finally, installation instructions are included.

More Details

Discrete sensor placement problems in distribution networks

Hart, William E.; Hart, William E.

We consider the problem of placing sensors in a network to detect and identify the source of any contamination. We consider two variants of this problem: (1) sensor-constrained: we are allowed a fixed number of sensors and want to minimize contamination detection time; and (2) time-constrained: we must detect contamination within a given time limit and want to minimize the number of sensors required. Our main results are as follows. First, we give a necessary and sufficient condition for source identification. Second, we show that the sensor and time constrained versions of the problem are polynomially equivalent. Finally, we show that the sensor-constrained version of the problem is polynomially equivalent to the asymmetric k-center problem and that the time-constrained version of the problem is polynomially equivalent to the dominating set problem.

More Details

Sensor placement in municipal water networks

Hart, William E.; Hart, William E.; Phillips, Cynthia A.

We present a model for optimizing the placement of sensors in municipal water networks to detect maliciously-injected contaminants. An optimal sensor configuration minimizes the expected fraction of the population at risk. We formulate this problem as an integer program, which can be solved with generally available IP solvers. We find optimal sensor placements for three real networks with synthetic risk and population data. Our experiments illustrate that this formulation can be solved relatively quickly, and that the predicted sensor configuration is relatively insensitive to uncertainties in the data used for prediction.

More Details

An introduction to the COLIN optimization interface

Hart, William E.; Hart, William E.

We describe COLIN, a Common Optimization Library INterface for C++. COLIN provides C++ template classes that define a generic interface for both optimization problems and optimization solvers. COLIN is specifically designed to facilitate the development of hybrid optimizers, for which one optimizer calls another to solve an optimization subproblem. We illustrate the capabilities of COLIN with an example of a memetic genetic programming solver.

More Details

Carbon sequestration in Synechococcus Sp.: from molecular machines to hierarchical modeling

Proposed for publication in OMICS: A Journal of Integrative Biology, Vol. 6, No.4, 2002.

Heffelfinger, Grant S.; Faulon, Jean-Loup M.; Frink, Laura J.; Haaland, David M.; Hart, William E.; Lane, Todd L.; Heffelfinger, Grant S.; Plimpton, Steven J.; Roe, Diana C.; Timlin, Jerilyn A.; Martino, Anthony M.; Rintoul, Mark D.; Davidson, George S.

The U.S. Department of Energy recently announced the first five grants for the Genomes to Life (GTL) Program. The goal of this program is to ''achieve the most far-reaching of all biological goals: a fundamental, comprehensive, and systematic understanding of life.'' While more information about the program can be found at the GTL website (www.doegenomestolife.org), this paper provides an overview of one of the five GTL projects funded, ''Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling.'' This project is a combined experimental and computational effort emphasizing developing, prototyping, and applying new computational tools and methods to elucidate the biochemical mechanisms of the carbon sequestration of Synechococcus Sp., an abundant marine cyanobacteria known to play an important role in the global carbon cycle. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO(2) are important terms in the global environmental response to anthropogenic atmospheric inputs of CO(2) and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. The project includes five subprojects: an experimental investigation, three computational biology efforts, and a fifth which deals with addressing computational infrastructure challenges of relevance to this project and the Genomes to Life program as a whole. Our experimental effort is designed to provide biology and data to drive the computational efforts and includes significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Our computational efforts include coupling molecular simulation methods with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes and developing a set of novel capabilities for inference of regulatory pathways in microbial genomes across multiple sources of information through the integration of computational and experimental technologies. These capabilities will be applied to Synechococcus regulatory pathways to characterize their interaction map and identify component proteins in these pathways. We will also investigate methods for combining experimental and computational results with visualization and natural language tools to accelerate discovery of regulatory pathways. Furthermore, given that the ultimate goal of this effort is to develop a systems-level of understanding of how the Synechococcus genome affects carbon fixation at the global scale, we will develop and apply a set of tools for capturing the carbon fixation behavior of complex of Synechococcus at different levels of resolution. Finally, because the explosion of data being produced by high-throughput experiments requires data analysis and models which are more computationally complex, more heterogeneous, and require coupling to ever increasing amounts of experimentally obtained data in varying formats, we have also established a companion computational infrastructure to support this effort as well as the Genomes to Life program as a whole.

More Details

DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 3.0 Developers Manual (title change from electronic posting)

Eldred, Michael S.; Giunta, Anthony A.; van Bloemen Waanders, Bart G.; Wojtkiewicz, Steven F.; Hart, William E.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, analytic reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.

More Details

DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 3.0

Eldred, Michael S.; Giunta, Anthony A.; van Bloemen Waanders, Bart G.; Wojtkiewicz, Steven F.; Hart, William E.; Giunta, Anthony A.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, analytic reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the DAKOTA software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

More Details

DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 3.0 Reference Manual

Eldred, Michael S.; Giunta, Anthony A.; van Bloemen Waanders, Bart G.; Wojtkiewicz, Steven F.; Hart, William E.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, analytic reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

More Details

PICO: An Object-Oriented Framework for Branch and Bound

Hart, William E.; Phillips, Cynthia A.; Phillips, Cynthia A.

This report describes the design of PICO, a C++ framework for implementing general parallel branch-and-bound algorithms. The PICO framework provides a mechanism for the efficient implementation of a wide range of branch-and-bound methods on an equally wide range of parallel computing platforms. We first discuss the basic architecture of PICO, including the application class hierarchy and the package's serial and parallel layers. We next describe the design of the serial layer, and its central notion of manipulating subproblem states. Then, we discuss the design of the parallel layer, which includes flexible processor clustering and communication rates, various load balancing mechanisms, and a non-preemptive task scheduler running on each processor. We describe the application of the package to a branch-and-bound method for mixed integer programming, along with computational results on the ASCI Red massively parallel computer. Finally we describe the application of the branch-and-bound mixed-integer programming code to a resource constrained project scheduling problem for Pantex.

More Details

Evolutionary pattern search algorithms for unconstrained and linearly constrained optimization

IEEE Transactions on Evolutionary Computation

Hart, William E.

The authors describe a convergence theory for evolutionary pattern search algorithms (EPSAs) on a broad class of unconstrained and linearly constrained problems. EPSAs adaptively modify the step size of the mutation operator in response to the success of previous optimization steps. The design of EPSAs is inspired by recent analyses of pattern search methods. The analysis significantly extends the previous convergence theory for EPSAs. The analysis applies to a broader class of EPSAs,and it applies to problems that are nonsmooth, have unbounded objective functions, and which are linearly constrained. Further, they describe a modest change to the algorithmic framework of EPSAs for which a non-probabilistic convergence theory applies. These analyses are also noteworthy because they are considerably simpler than previous analyses of EPSAs.

More Details

Invariant patterns in crystal lattices: Implications for protein folding algorithms

Journal for Universal Computer Science

Hart, William E.; Istrail, Sorin I.

Crystal lattices are infinite periodic graphs that occur naturally in a variety of geometries and which are of fundamental importance in polymer science. Discrete models of protein folding use crystal lattices to define the space of protein conformations. Because various crystal lattices provide discretizations of the same physical phenomenon, it is reasonable to expect that there will exist invariants across lattices related to fundamental properties of the protein folding process. This paper considers whether performance-guaranteed approximability is such an invariant for HP lattice models. The authors define a master approximation algorithm that has provable performance guarantees provided that a specific sublattice exists within a given lattice. They describe a broad class of crystal lattices that are approximable, which further suggests that approximability is a general property of HP lattice models.

More Details

A naturalistic decision making model for simulated human combatants

Hart, William E.; Forsythe, James C.

The authors describe a naturalistic behavioral model for the simulation of small unit combat. This model, Klein's recognition-primed decision making (RPD) model, is driven by situational awareness rather than a rational process of selecting from a set of action options. They argue that simulated combatants modeled with RPD will have more flexible and realistic responses to a broad range of small-scale combat scenarios. Furthermore, they note that the predictability of a simulation using an RPD framework can be easily controlled to provide multiple evaluations of a given combat scenario. Finally, they discuss computational issues for building an RPD-based behavior engine for fully automated combatants in small conflict scenarios, which are being investigated within Sandia's Next Generation Site Security project.

More Details
145 Results
145 Results