Publications

11 Results
Skip to search filters

Biosecurity through Public Health System Design

Beyeler, Walter E.; Finley, Patrick D.; Arndt, William A.; Walser, Alex C.; Mitchell, Michael D.

We applied modeling and simulation to examine the real-world tradeoffs between developingcountry public-health improvement and the need to improve the identification, tracking, and security of agents with bio-weapons potential. Traditionally, the international community has applied facility-focused strategies for improving biosecurity and biosafety. This work examines how system-level assessments and improvements can foster biosecurity and biosafety. We modeled medical laboratory resources and capabilities to identify scenarios where biosurveillance goals are transparently aligned with public health needs, and resource are distributed in a way that maximizes their ability to serve patients while minimizing security a nd safety risks. Our modeling platform simulates key processes involved in healthcare system operation, such as sample collection, transport, and analysis at medical laboratories. The research reported here extends the prior art by provided two key compone nts for comparative performance assessment: a model of patient interaction dynamics, and the capability to perform uncertainty quantification. In addition, we have outlined a process for incorporating quantitative biosecurity and biosafety risk measures. Two test problems were used to exercise these research products examine (a) Systemic effects of technological innovation and (b) Right -sizing of laboratory networks.

More Details

Laser Machined Plastic Laminates: Towards Portable Diagnostic Devices for Use in Low Resource Environments

Electroanalysis

Harper, Jason C.; Carson, Bryan C.; Bachand, George B.; Arndt, William A.; Finley, Melissa F.; Brinker, C.J.; Edwards, Thayne L.

Despite significant progress in development of bioanalytical devices cost, complexity, access to reagents and lack of infrastructure have prevented use of these technologies in resource-limited regions. To provide a sustainable tool in the global effort to combat infectious diseases the diagnostic device must be low cost, simple to operate and read, robust, and have sensitivity and specificity comparable to laboratory analysis. In this mini-review we describe recent work using laser machined plastic laminates to produce diagnostic devices that are capable of a wide variety of bioanalytical measurements and show great promise towards future use in low-resource environments.

More Details

Biosecurity management recommendations for rinderpest laboratories

Brodsky, Benjamin H.; Caskey, Susan A.; Arndt, William A.

Rinderpest is a virus that can affect cattle and other even toes ungulates; evidence of outbreaks from over 10,000 years ago highlights the potential impact of this virus. During the 18th century, Rinderpest caused huge losses in cattle throughout Europe. Starting in the mid 1900’s vaccination efforts seemed feasible and work was initiated to vaccinate large populations of cattle. Walter Plowright received numerous awards for updating the Rinderpest vaccine which many believed would be the key to eradication. Vaccination of the disease lead to a massive drop in outbreaks and the last confirmed case of Rinderpest in Asia was in 2000 and in Africa in 2001.1 At this point, Rinderpest has been declared eradicated from nature. However, stocks of the virus are still in many laboratories.2 Rinderpest was investigated as a biological weapon agent during the Second World War. However, following WWII, rinderpest was not considered a high risk as a biological weapon as there was no direct military advantage. Now, with the concern of the use of biological agents as weapons in acts of terrorism, concern regarding rinderpest has resurfaced. Since the eradication of this virus, cattle populations are highly susceptibility to the virus and the economic impacts would be significant. This paper will discuss the specific nature of the terrorism risks associated with rinderpest; and based upon those risks provide recommendations regarding biosecurity management. The biosecurity management measures will be defined in a manner to align with the CWA 15793: the laboratory biorisk management document.

More Details
11 Results
11 Results