Publications

6 Results
Skip to search filters

Performance of nonlinear modal model in predicting complex bilinear stiffness

Conference Proceedings of the Society for Experimental Mechanics Series

Pacini, Benjamin R.; Holzmann, Wilfried A.; Mayes, R.L.

Several recent studies (Mayes, R.L., Pacini, B.R., Roettgen, D.R.: A modal model to simulate typical structural dynamics nonlinearity. In: Proceedings of the 34th International Modal Analysis Conference. Orlando, FL, (2016); Pacini, B.R., Mayes, R.L., Owens, B.C., Schultz, R.: Nonlinear finite element model updating, part I: experimental techniques and nonlinear modal model parameter extraction. In: Proceedings of the 35th international modal analysis conference, Garden Grove, CA, (2017)) have investigated predicting nonlinear structural vibration responses using modified modal models. In such models, a nonlinear element is added in parallel to the traditional linear spring and damping elements. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. Previous studies have predominantly applied this method to idealistic structures. In this work, the nonlinear modal modeling technique is applied to a more realistic industrial aerospace structure which exhibits complex bilinear behavior. Linear natural frequencies, damping values, and mode shapes are first extracted from low level shaker testing. Subsequently, the structure is excited using high level tailored shaker inputs. The resulting response data are modally filtered and used to empirically derive the nonlinear elements which, together with their linear counterparts, comprise the nonlinear modal model. This model is then used in both modal and physical domain simulations. Comparisons to measured data are made and the performance of the nonlinear modal model to predict this complex bilinear behavior is discussed.

More Details

Nonlinear response of a lap-type joint using a whole-interface model

Conference Proceedings of the Society for Experimental Mechanics Series

Segalman, Daniel J.; Holzmann, Wilfried A.

Structural assemblies often include bolted connections that are a primary mechanism for energy dissipation and nonlinear response at elevated load levels. Typically these connections are idealized within a structural dynamics finite element model as linear elastic springs. The spring stiffness is generally tuned to reproduce modal test data taken on a prototype. In conventional practice, modal test data is also used to estimate nominal values of modal damping that could be used in applications with load amplitudes comparable to those employed in the modal tests. Although this simplification of joint mechanics provides a convenient modeling approach with the advantages of reduced complexity and solution requirements, it often leads to poor predicted responses for load regimes associated with nonlinear system behavior. In this document we present an alternative approach using the concept of a "whole-joint" or "whole-interface" model [1]. We discuss the nature of the constitutive model, the manner in which model parameters are deduced, and comparison of structural dynamic prediction with results for experimental hardware subjected to a series of transient excitations beginning at low levels and increasing to levels that produced macro-slip in the joint. Further comparison is performed with a traditional "tuned" linear model. The ability of the whole-interface model to predict the onset of macro-slip as well as the vast improvement of the response levels in relation to those given by the linear model is made evident. Additionally, comparison between prediction and high amplitude experiments suggests areas for further work.

More Details
6 Results
6 Results