Publications

11 Results
Skip to search filters

Kinetics of Hydrogen Isotope Exchange in β-Phase Pd-H-D

Journal of Physical Chemistry C

Luo, Weifang L.; Cowgill, D.F.

Hydrogen isotope gas exchange within palladium powders is examined using a batch-type reactor coupled to a residual gas analyzer (RGA). Exchange rates in both directions (H2 + PdD and D2 + PdH) are measured in the temperature range 178-323 K for the samples with different particle sizes. The results show this batch-type exchange is closely approximated as a first-order kinetic process with a rate directly proportional to the surface area of the powder particles. An exchange rate constant of 1.40 ± 0.24 μmol H2/atm cm2 s is found for H2 + PdD at 298 K, 1.4 times higher than that for D2 + PdH, with an activation energy of 25.0 ± 3.2 kJ/mol H for both exchange directions. A comparison of exchange measurement techniques shows these coefficients, and the fundamental exchange probabilities are in good agreement with those obtained by NMR and flow techniques.

More Details

Thermodynamic and kinetic characterization of H-D exchange in Pd and Pd alloys

Luo, Weifang L.

A Sieverts apparatus coupled with an RGA is an effective method to detect composition variations during isotopic exchange. This experimental setup provides a powerful tool for the thermodynamic and kinetic characterization of H-D isotope exchange on metals and alloys. H-D exchange behavior during absorption and desorption in the plateau region in Pd have been investigated and reported here. It was found that in the plateau region of H-D-Pd system the equilibrium pressures are between those of H2-Pd and D2-Pd for both absorption and desorption and the equilibrium pressures are higher when the fractions of D in the Pd are higher. Adding a dose of gas H2 (or D2) to Pd-D (or Pd-H) system results in releasing of gas D2 and HD (or H2 and HD) in {beta}-phase of Pd-D (or {beta}-phase of Pd-H), but this does not happen in the plateau region. The equilibrium constants have been determined during exchange and it was found that they agree well with the calculated values reported in literature. The separation factor {alpha} values during exchange have been measured and compared with the literature values. The exchange rates have been determined from the exchange profiles and a first order kinetic model for the exchange of H-D-Pd systems has been employed for the analysis. The exchange activation energies for both directions, H2+PdD and D2+PdH, have been determined.

More Details

Tritium Storage Material

Cowgill, D.F.; Fares, Stephen J.; Ong, Markus D.; Arslan, Ilke A.; Tran, Kim T.; Sartor, George B.; Stewart, Kenneth D.; Cliff, Miles; Robinson, David R.; McCarty, Kevin F.; Luo, Weifang L.; Smugeresky, J.E.

Nano-structured palladium is examined as a tritium storage material with the potential to release beta-decay-generated helium at the generation rate, thereby mitigating the aging effects produced by enlarging He bubbles. Helium retention in proposed structures is modeled by adapting the Sandia Bubble Evolution model to nano-dimensional material. The model shows that even with ligament dimensions of 6-12 nm, elevated temperatures will be required for low He retention. Two nanomaterial synthesis pathways were explored: de-alloying and surfactant templating. For de-alloying, PdAg alloys with piranha etchants appeared likely to generate the desired morphology with some additional development effort. Nano-structured 50 nm Pd particles with 2-3 nm pores were successfully produced by surfactant templating using PdCl salts and an oligo(ethylene oxide) hexadecyl ether surfactant. Tests were performed on this material to investigate processes for removing residual pore fluids and to examine the thermal stability of pores. A tritium manifold was fabricated to measure the early He release behavior of this and Pd black material and is installed in the Tritium Science Station glove box at LLNL. Pressure-composition isotherms and particle sizes of a commercial Pd black were measured.

More Details

Towards a viable hydrogen storage system for transportation application

Luo, Weifang L.

Hydrogen energy may provide the means to an environmentally friendly future. One of the problems related to its application for transportation is 'on-board' storage. Hydrogen storage in solids has long been recognized as one of the most practical approaches for this purpose. The H-capacity in interstitial hydrides of most metals and alloys is limited to below 2.5% by weight and this is unsatisfactory for on-board transportation applications. Magnesium hydride is an exception with hydrogen capacity of {approx}8.2 wt.%, however, its operating temperature, above 350 C, is too high for practical use. Sodium alanate (NaAlH{sub 4}) absorbs hydrogen up to 5.6 wt.% theoretically; however, its reaction kinetics and partial reversibility do not completely meet the new target for transportation application. Recently Chen et al. [1] reported that (Li{sub 3} N + 2H{sub 2} {leftrightarrow} LiNH{sub 2} + 2LiH) provides a storage material with a possible high capacity, up to 11.5 wt.%, although this material is still too stable to meet the operating pressure/temperature requirement. Here we report a new approach to destabilize lithium imide system by partial substitution of lithium by magnesium in the (LiNH{sub 2 + LiH {leftrightarrow} Li2NH + H2}) system with a minimal capacity loss. This Mg-substituted material can reversibly absorb 5.2 wt.% hydrogen at pressure of 30 bar at 200 C. This is a very promising material for on-board hydrogen storage applications. It is interesting to observe that the starting material (2LiNH{sub 2 + MgH2}) converts to (Mg(NH{sub 2}){sub 2} + 2LiH) after a desorption/re-absorption cycle.

More Details
11 Results
11 Results