Implementation of spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustion repeatability from cycle to cycle.The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum.This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. In contrast, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel-air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.
Well-mixed lean or dilute SI engine operation can provide efficiency improvements relative to that of traditional well-mixed stoichiometric SI operation. However, the realized gains depend on the ability to ensure stable, complete and fast combustion. In this work, the influence of fuel type is examined for gasoline, E30 and E85. Several enabling techniques are compared. For enhanced ignition stability, a multi-pulse (MP) transient plasma ignition system is compared to a conventional high-energy inductive spark ignition system. Combined effects of fuel type and intake-gas preheating are examined. Also, the effects of dilution type (air or N2-simulated EGR) on lean efficiency gains and stability limits are clarified. The largest efficiency improvement is found for lean gasoline operation using intake preheating, showing the equivalent of a 20% fuel-economy gain relative to traditional non-dilute stoichiometric operation. The reason for gasoline’s larger efficiency improvement is its lower octane number which facilitates the use of end-gas autoignition to produce mixed-mode combustion. For these conditions, such mixed-mode combustion is required for rapid completion of the inherently slow lean combustion event prior to piston expansion. The fuel-economy gains are somewhat smaller for both E30 and E85 because of higher resistance to end-gas autoignition under lean conditions. To avoid knocking cycles when mixed-mode combustion is used, the deflagration-based combustion must be very repeatable to ensure consistent compression of the end-gas reactants. Multi-pulse transient plasma ignition is used beneficially to stabilize the combustion, especially for dilute operation which suffers from low flame speeds. However, even with an enhanced ignition system, the best fuel-economy gains of dilute stoichiometric operation with mixed-mode combustion are on the order of 11-12%, which is substantially less than for lean operation.
This study investigates combustion variability of a stratified-charge direct-injection spark ignited (DISI) engine, operated with near-TDC injection of E70 fuel and a spark timing that occurs during the early part of the fuel injection. Using EGR, low engine-out NOx can be achieved, but at the expense of increased combustion variability at higher engine speeds. Initial motored tests at different speeds reveal that the in-cylinder gas flow becomes sufficiently strong at 2000 rpm to cause significant cycle-to-cycle variations of the spray penetration. Hence, the fired tests focus on operation at 2000 rpm with N2 dilution ([O2] = 19% and 21%) to simulate EGR. In-cylinder flow, spray, and early-flame measurements are correlated to reveal their effect on the combustion variability. Results reveal two types of flow/spray-interactions that predict the likelihood of a partial burn. (1) Proper flow direction before injection with a more collapsed spray leads to high kinetic energy of the flow during injection, thus generating a rapid early burn, which ensures complete combustion, regardless of the EGR level. (2) Improper flow direction and less collapsed spray generate low flow energy during the early phase of combustion. For this second type of flow/spray-interaction, application of EGR results in a partial-burn frequency of 30%, whereas without EGR, early combustion is shown to be insensitive to flow variations. Flame-probability maps illustrate that the partial-burn cycles for operation with EGR have a weak flame development in that the flame does not develop uniformly and reliably from the spark plug. Without EGR, the flame development is more repeatable regardless of the type of flow/spray-interaction, at the expense of higher NOx emissions.
Well-mixed lean SI engine operation can provide improvements of the fuel economy relative to that of traditional well-mixed stoichiometric SI operation. This work examines the use of two methods for improving the stability of lean operation, namely multi-pulse transient plasma ignition and intake air preheating. These two methods are compared to standard SI operation using a conventional high-energy inductive ignition system without intake air preheating. E85 is the fuel chosen for this study. The multi-pulse transient plasma ignition system utilizes custom electronics to generate 10 kHz bursts of 10 ultra-short (12ns), high-amplitude pulses (200 A). These pulses were applied to a custom spark plug with a semi-open ignition cavity. High-speed imaging reveals that ignition in this cavity generates a turbulent jet-like early flame spread that speeds up the transition from ignition to the main combustion event. Performance testing shows that lean operation with heated intake air enables a 17% improvement of fuel economy at ϕ = 0.59 for both ignition systems, relative to that of stoichiometric operation. Moreover, multi-pulse transient plasma ignition offers more stable ultra-lean operation, with IMEPn variability less than 5% down to ϕ = 0.49. The ability to operate stably at such lean conditions is attributed to a more stable flame initiation offered by both the increased charge temperature and the multi-pulse transient plasma ignition that allows a later spark timing due to the very fast transition to fully turbulent deflagration.