Publications

18 Results
Skip to search filters

Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc fault modeling

Conference Record of the IEEE Photovoltaic Specialists Conference

Johnson, Jay; Schoenwald, David A.; Kuszmaul, Scott S.; Strauch, Jason; Bower, Ward I.

Article 690.11 in the 2011 National Electrical Code® (NEC®) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies. © 2011 IEEE.

More Details

Evaluation of Islanding Detection Methods for Utility-Interactive Inverters in Photovoltaic Systems

Bower, Ward I.

This report describes the various methods and circuits that have been developed to detect an islanding condition for photovoltaic applications and presents three methods that have been developed to test those methods and circuits. Passive methods for detecting an islanding condition basically monitor parameters such as voltage and frequency and/or their characteristics and cause the inverter to cease converting power when there is sufficient transition from normal specified conditions. Active methods for detecting the island introduce deliberate changes or disturbances to the connected circuit and then monitor the response to determine if the utility grid with its stable frequency, voltage and impedance is still connected. If the small perturbation is able to affect the parameters of the load connection within prescribed requirements, the active circuit causes the inverter to cease power conversion and delivery of power to the loads. The methods not resident in the inverter are generally controlled by the utility or have communications between the inverter and the utility to affect an inverter shut down when necessary. This report also describes several test methods that may be used for determining whether the anti-islanding method is effective. The test circuits and methodologies used in the U.S. have been chosen to limit the number of tests by measuring the reaction of a single or small number of inverters under a set of consensus-based worst-case conditions.

More Details

Investigation of Ground-Fault Protection Devices for Photovoltaic Power Systems Applications

Bower, Ward I.

Photovoltaic (PV) power systems, like other electrical systems, may be subject to unexpected ground faults. Installed PV systems always have invisible elements other than those indicated by their electrical schematics. Stray inductance, capacitance and resistance are distributed throughout the system. Leakage currents associated with the PV modules, the interconnected array, wires, surge protection devices and conduit add up and can become large enough to look like a ground-fault. PV systems are frequently connected to other sources of power or energy storage such as batteries, standby generators, and the utility grid. This complex arrangement of distributed power and energy sources, distributed impedance and proximity to other sources of power requires sensing of ground faults and proper reaction by the ground-fault protection devices. The different dc grounding requirements (country to country) often add more confusion to the situation. This paper discusses the ground-fault issues associated with both the dc and ac side of PV systems and presents test results and operational impacts of backfeeding commercially available ac ground-fault protection devices under various modes of operation. Further, the measured effects of backfeeding the tripped ground-fault devices for periods of time comparable to anti-islanding allowances for utility interconnection of PV inverters in the United States are reported.

More Details

Progress in Photovoltaic Components and Systems

Bower, Ward I.; Bower, Ward I.

The Photovoltaic Manufacturing Research and Development project is a government/industry partnership between the US Department of Energy and members of the US photovoltaic (TV) industry. The purpose of the project is to work with industry to improve manufacturing processes, reduce manufacturing costs, and improve the performance of PV products. This project is conducted through phased solicitations with industry participants selected through a competitive evaluation process. Starting in 1995, the two most recent solicitations include manufacturing improvements for balance-of-system (BOS) components, energy storage, and PV system design improvements. This paper surveys the work accomplished since that time, as well as BOS work currently in progress in the PV Manufacturing R and D project to identify areas of continued interest and product trends. Industry participants continue to work to improve inverters and to expand the features and capabilities of this key component. The industry also continues to advance fully integrated systems that meet standards for performance and safety. All participants included manufacturing improvements to reduce costs and improve reliability. Accomplishments of the project's participants are summarized to illustrate the product and manufacturing trends.

More Details

Testing to Support Improvements to PV Components and Systems

Bower, Ward I.; Bonn, Russell H.; Ginn, Jerry W.; Gonzalez, Sigifredo G.; Bower, Ward I.

The National Photovoltaic (PV) Program is sponsored by the US Department of Energy and includes a PV Manufacturing Research and Development (R and D) project conducted with industry. This project includes advancements in PV components to improve reliability, reduce costs, and develop integrated PV systems. Participants submit prototypes, pre-production hardware products, and examples of the resulting final products for a range of tests conducted at several national laboratories, independent testing laboratories, and recognized listing agencies. The purpose of this testing is to use the results to assist industry in determining a product's performance and reliability, and to identify areas for potential improvement. This paper briefly describes the PV Manufacturing R and D project, participants in the area of PV systems, balance of systems, and components, and several examples of the different types of product and performance testing used to support and confirm product performance.

More Details
18 Results
18 Results