Publications

18 Results
Skip to search filters

Experimental credibility and its role in model validation and decision making

Conference Proceedings of the Society for Experimental Mechanics Series

Kieweg, Sarah K.; Witkowski, Walter R.

Experiments are a critical part of the model validation process, and the credibility of the resulting simulations are themselves dependent on the credibility of the experiments. The impact of experimental credibility on model validation occurs at several points through the model validation and uncertainty quantification (MVUQ) process. Many aspects of experiments involved in the development and verification and validation (V&V) of computational simulations will impact the overall simulation credibility. In this document, we define experimental credibility in the context of model validation and decision making. We summarize possible elements for evaluating experimental credibility, sometimes drawing from existing and preliminary frameworks developed for evaluation of computational simulation credibility. The proposed framework is an expert elicitation tool for planning, assessing, and communicating the completeness and correctness of an experiment (“test”) in the context of its intended use—validation. The goals of the assessment are (1) to encourage early communication and planning between the experimentalist, computational analyst, and customer, and (2) the communication of experimental credibility. This assessment tool could also be used to decide between potential existing data sets to be used for validation. The evidence and story of experimental credibility will support the communication of overall simulation credibility.

More Details

Uncertainty quantification's role in modeling and simulation planning, and credibility assessment through the predictive capability maturity model

Handbook of Uncertainty Quantification

Rider, William J.; Witkowski, Walter R.; Mousseau, Vincent A.

The importance of credible, trustworthy numerical simulations is obvious especially when using the results for making high-consequence decisions. Determining the credibility of such numerical predictions is much more difficult and requires a systematic approach to assessing predictive capability, associated uncertainties and overall confidence in the computational simulation process for the intended use of the model. This process begins with an evaluation of the computational modeling of the identified, important physics of the simulation for its intended use. This is commonly done through a Phenomena Identification Ranking Table (PIRT). Then an assessment of the evidence basis supporting the ability to computationally simulate these physics can be performed using various frameworks such as the Predictive Capability Maturity Model (PCMM). Several critical activities follow in the areas of code and solution verification, validation and uncertainty quantification, which will be described in detail in the following sections. The subject matter is introduced for general applications but specifics are given for the failure prediction project. The first task that must be completed in the verification & validation procedure is to perform a credibility assessment to fully understand the requirements and limitations of the current computational simulation capability for the specific application intended use. The PIRT and PCMM are tools used at Sandia National Laboratories (SNL) to provide a consistent manner to perform such an assessment. Ideally, all stakeholders should be represented and contribute to perform an accurate credibility assessment. PIRTs and PCMMs are both described in brief detail below and the resulting assessments for an example project are given.

More Details

Development of a fourth generation predictive capability maturity model

Hills, Richard G.; Witkowski, Walter R.; Rider, William J.; Trucano, Timothy G.; Urbina, Angel U.

The Predictive Capability Maturity Model (PCMM) is an expert elicitation tool designed to characterize and communicate completeness of the approaches used for computational model definition, verification, validation, and uncertainty quantification associated for an intended application. The primary application of this tool at Sandia National Laboratories (SNL) has been for physics-based computational simulations in support of nuclear weapons applications. The two main goals of a PCMM evaluation are 1) the communication of computational simulation capability, accurately and transparently, and 2) the development of input for effective planning. As a result of the increasing importance of computational simulation to SNLs mission, the PCMM has evolved through multiple generations with the goal to provide more clarity, rigor, and completeness in its application. This report describes the approach used to develop the fourth generation of the PCMM.

More Details

CASL L2 milestone report : VUQ.Y1.03, %22Enable statistical sensitivity and UQ demonstrations for VERA.%22

Adams, Brian M.; Witkowski, Walter R.

The CASL Level 2 Milestone VUQ.Y1.03, 'Enable statistical sensitivity and UQ demonstrations for VERA,' was successfully completed in March 2011. The VUQ focus area led this effort, in close partnership with AMA, and with support from VRI. DAKOTA was coupled to VIPRE-W thermal-hydraulics simulations representing reactors of interest to address crud-related challenge problems in order to understand the sensitivity and uncertainty in simulation outputs with respect to uncertain operating and model form parameters. This report summarizes work coupling the software tools, characterizing uncertainties, selecting sensitivity and uncertainty quantification algorithms, and analyzing the results of iterative studies. These demonstration studies focused on sensitivity and uncertainty of mass evaporation rate calculated by VIPRE-W, a key predictor for crud-induced power shift (CIPS).

More Details

Finite element meshing approached as a global minimization process

Witkowski, Walter R.; Jung, Joseph J.; Dohrmann, Clark R.; Leung, Vitus J.

The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested before this project ended. The primary complexity in the extension was in the connectivity problem formulation. Defining all of the interparticle interactions that occur in three-dimensions and expressing them in mathematical relationships is very difficult.

More Details
18 Results
18 Results