Efficient restoration of the electric grid from significant disruptions – both natural and manmade – that lead to the grid entering a failed state is essential to maintaining resilience under a wide range of threats. Restoration follows a set of black start plans, allowing operators to select among these plans to meet the constraints imposed on the system by the disruption. Restoration objectives aim to restore power to a maximum number of customers in the shortest time. Current state-of-the-art for restoration modeling breaks the problem into multiple parts, assuming a known network state and full observability and control by grid operators. These assumptions are not guaranteed under some threats. This paper focuses on a novel integration of modeling and analysis capabilities to aid operators during restoration activities. A power flow-informed restoration framework, comprised of a restoration mixed-integer program informed by power flow models to identify restoration alternatives, interacts with a dynamic representation of the grid through a cognitive model of operator decision-making, to identify and prove an optimal restoration path. Application of this integrated approach is illustrated on exemplar systems. Validation of the restoration is performed for one of these exemplars using commercial solvers, and comparison is made between the steps and time involved in the commercial solver, and that required by the restoration optimization in and of itself, and by the operator model in acting on the restoration optimization output. Publications and proposals developed under this work, along with a path forward for additional expansion of the work, and summary of what was achieved, are also documented.
As social distancing policies and recommendations went into effect in response to COVID-19, people made rapid changes to the places they visit. These changes are clearly seen in mobility data, which records foot traffic using location trackers in cell phones. While mobility data is often used to extract the number of customers that visit a particular business or business type, it is the frequency and duration of concurrent occupancy at those sites that governs transmission. Understanding the way people interact at different locations can help target policies and inform contact tracing and prevention strategies. This paper outlines methods to extract interactions from mobility data and build networks that can be used in epidemiological models. Several measures of interaction are extracted: interactions between people, the cumulative interactions for a single person, and cumulative interactions that occur at particular businesses. Network metrics are computed to identify structural trends which show clear changes based on the timing of stay-at-home orders. Measures of interaction and structural trends in the resulting networks can be used to better understand potential spreading events, the percent of interactions that can be classified as close contacts, and the impact of policy choices to control transmission.
Electric power is crucial to the function of other infrastructures, as well as to the stability of the economy and the social order. Disruption of commercial electric power service, even for brief periods of time, can create significant consequences to the function of other sectors, and make living in some environments untenable. This analysis, conducted in 2017 for the United States Department of Energy (DOE) as part of the Grid Modernization Laboratory Consortium (GMLC) Initiative, focuses on describing the function of each of the other infrastructure sectors and subsectors, with an eye towards those elements of these sectors that depend on primary electric power service through the commercial electric power grid. It leverages the experience of Sandia analysts in analyzing historical disruptive events, and from the development of capabilities designed to identify the physical, logical, and geographic connectivity between infrastructures. The analysis goes on to identify alternatives for the provision of primary electric power service, and the redundancy of said alternatives, to provide a picture of the sector’s ability to withstand an extended disruption.
The NetFlow Dynamics (NFD) model was developed for estimating the availability of a commodity supplied by a national- or regional-scale infrastructure following unexpected disruption of one or more of its components. The large scope of the disruptions of interest produce changes in availability lasting days to weeks. Consequently, the model does not resolve daily variations in system state and does not include the long-term processes that cause infrastructures to evolve as assets are added and removed according to owners ’planning decisions. NFD simulates fluid flow, including petroleum and other incompressible fluids, as well as natural gas and other compressible fluids, through pipeline networks characterized by limits on transmission capacity and storage. It was designed to enable efficient exploration of possible transmission system responses to large-scale disruptions lasting for days or longer. The model formulation reflects constraints on transmission and storage capacity imposed by the physical system assets. Those capacity limits are input parameters and are not derived from more basic system properties such as pipeline diameters and compressor power. A system’s response to a large disruption is controlled by operational decisions as well as damage to physical assets. The NFD model formulation allows users to efficiently consider alternative scenarios about the way remaining capacity might be used so that the analysis result appropriately reflects uncertainties about operator response.
As part of the Department of Energy response to the novel coronavirus pandemic of 2020, a modeling effort was sponsored by the DOE Office of Science. One task of this modeling effort at Sandia was to develop a model to predict medical resource needs given various patient arrival scenarios. Resources needed include personnel resources (nurses, ICU nurses, physicians, respiratory therapists), fixed resources (regular or ICU beds and ventilators), and consumable resources (masks, gowns, gloves, face shields, sedatives). This report documents the uncertainty analysis that was performed on the resource model. The uncertainty analysis involved sampling 26 input parameters to the model. The sampling was performed conditional on the patient arrival streams that also were inputs to the model. These patient arrival streams were derived from various epidemiology models and had a significant effect on the projected resource needs. In this report, we document the sampling approach, the parameter ranges used, and the computational workflow necessary to perform large-scale uncertainty studies for every county and state in the United States.
Data obtained from biosurveillance can be used by public health systems to detect and respond to disease outbreaks and save lives. However, existing data is distributed across large geographic areas, and both the quality and type of data vary in space and time. We discuss a framework for analyzing biosurveillance information to minimize detection time and maximize detection accuracy while scaling the analysis over large regions. We propose that strategies used by canonical biological complex systems, which are adapted to diverse environments, provide good models for the design of a robust, adaptive, and scalable biosurveillance system. Drawing from knowledge of the adaptive immune system, and ant colonies, we examine strategies that support the scaling of detection in order to search and respond in large areas with dynamic distributions of data. Based on this research, we discuss a bioinspired approach for a distributed, adaptive, and scalable biosurveillance system.
This study developed and tested biologically inspired computational methods to detect anomalous signals in data streams that could indicate a pending outbreak or bio-weapon attack. Current large- scale biosurveillance systems are plagued by two principal deficiencies: (1) timely detection of disease-indicating signals in noisy data and (2) anomaly detection across multiple channels. Anomaly detectors and data fusion components modeled after human immune system processes were tested against a variety of natural and synthetic surveillance datasets. A pilot scale immune-system-based biosurveillance system performed at least as well as traditional statistical anomaly detection data fusion approaches. Machine learning approaches leveraging Deep Learning recurrent neural networks were developed and applied to challenging unstructured and multimodal health surveillance data. Within the limits imposed of data availability, both immune systems and deep learning methods were found to improve anomaly detection and data fusion performance for particularly challenging data subsets. ACKNOWLEDGEMENTS The authors acknowledge the close collaboration of Scott Lee, Jason Thomas, and Chad Heilig from the US Centers for Disease Control (CDC) in this effort. De-identified biosurveillance data provided by Ken Jeter of the New Mexico Department of Health proved to be an important contribution to our work. Discussions with members of the International Society of Disease Surveillance helped the researchers focus on questions relevant to practicing public health professionals. Funding for this work was provided by Sandia National Laboratories' Laboratory Directed Research and Development program.
This paper discusses relevant findings and theories regarding the role of ideology, culture, and context in shaping the behaviors of individuals within violent social movements. Accordingly, this focus concerns the comparative weight placed on ideology and culture (expressed principles and motives) versus external factors as chief influencers for the propensity of individuals to act outside of the norms of society and politics by resorting to violent behaviors. In doing so, we have drawn upon theory from anthropology, behavioral economics, political science, psychology, and sociology to better understand how these variables give birth to and nurture militant social movements. F u r t h e r d i s s e m i n a t i o n o n l y a s a u t h o r i z e d t o U . S . G o v e r n m e n t a g e n c i e s a n d t h e i r c o n t r a c t o r s ; o t h e r r e q u e s t s s h a l l b e a p p r o v e d b y t h e o r i g i n a t i n g f a c i l i t y o r h i g h e r D O E p r o g r a m m a t i c a u t h o r i t y .
Simulation models can improve decisions meant to control the consequences of disruptions to critical infrastructures. We describe a dynamic flow model on networks purposed to inform analyses by those concerned about consequences of disruptions to infrastructures and to help policy makers design robust mitigations. We conceptualize the adaptive responses of infrastructure networks to perturbations as market transactions and business decisions of operators. We approximate commodity flows in these networks by a diffusion equation, with nonlinearities introduced to model capacity limits. To illustrate the behavior and scalability of the model, we show its application first on two simple networks, then on petroleum infrastructure in the United States, where we analyze the effects of a hypothesized earthquake.
Within the Department of Homeland Security (DHS), the Office of Cyber and Infrastructure Analysis (OCIA)'s National Infrastructure Simulation and Analysis Center (NISAC) develops capabilities to support the DHS mission and the resilience of the Nation’s critical infrastructure. At Sandia National Laboratories, under DHS/OCIA direction, NISAC is developing models of financial sector dependence on communications. This capability is designed to improve DHS's ability to assess potential impacts of communication disruptions to major financial services and the effectiveness of possible mitigations. This report summarizes findings and recommendations from the application of that capability as part of the FY2016 NISAC program plan.
We applied modeling and simulation to examine the real-world tradeoffs between developingcountry public-health improvement and the need to improve the identification, tracking, and security of agents with bio-weapons potential. Traditionally, the international community has applied facility-focused strategies for improving biosecurity and biosafety. This work examines how system-level assessments and improvements can foster biosecurity and biosafety. We modeled medical laboratory resources and capabilities to identify scenarios where biosurveillance goals are transparently aligned with public health needs, and resource are distributed in a way that maximizes their ability to serve patients while minimizing security a nd safety risks. Our modeling platform simulates key processes involved in healthcare system operation, such as sample collection, transport, and analysis at medical laboratories. The research reported here extends the prior art by provided two key compone nts for comparative performance assessment: a model of patient interaction dynamics, and the capability to perform uncertainty quantification. In addition, we have outlined a process for incorporating quantitative biosecurity and biosafety risk measures. Two test problems were used to exercise these research products examine (a) Systemic effects of technological innovation and (b) Right -sizing of laboratory networks.
The Integrated Human Futures Project provides a set of analytical and quantitative modeling and simulation tools that help explore the links among human social, economic, and ecological conditions, human resilience, conflict, and peace, and allows users to simulate tradeoffs and consequences associated with different future development and mitigation scenarios. In the current study, we integrate five distinct modeling platforms to simulate the potential risk of social unrest in Egypt resulting from the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile in Ethiopia. The five platforms simulate hydrology, agriculture, economy, human ecology, and human psychology/behavior, and show how impacts derived from development initiatives in one sector (e.g., hydrology) might ripple through to affect other sectors and how development and security concerns may be triggered across the region. This approach evaluates potential consequences, intended and unintended, associated with strategic policy actions that span the development-security nexus at the national, regional, and international levels. Model results are not intended to provide explicit predictions, but rather to provide system-level insight for policy makers into the dynamics among these interacting sectors, and to demonstrate an approach to evaluating short- and long-term policy trade-offs across different policy domains and stakeholders. The GERD project is critical to government-planned development efforts in Ethiopia but is expected to reduce downstream freshwater availability in the Nile Basin, fueling fears of negative social and economic impacts that could threaten stability and security in Egypt. We tested these hypotheses and came to the following preliminary conclusions. First, the GERD will have an important short-term impact on water availability, food production, and hydropower production in Egypt, depending on the short- term reservoir fill rate. Second, the GERD will have a very small impact on water availability in the Nile Basin over the longer term. Depending on the GERD fill rate, short-term (e.g., within its first 5 years of operation) annual losses in Egyptian food production may peak briefly at 25 percent. Long-term (e.g., 15 to 30 year) cumulative losses in Egypt's food production may be less than 3 percent regardless of the fill rate, with the GERD having essentially no impact on projected annual food production in Egypt about 25 years after opening. For the quick fill rates, the short-term losses may be sufficient to create an important decrease in overall household health among the general population, which, along with other economic stressors and different strategies employed by the government, could lead to social unrest. Third, and perhaps most importantly, our modeling suggests that the GERD's effect on Egypt's food and water resources is small when compared to the effect of projected Egyptian population and economic growth (and the concomitant increase in water consumption). The latter dominating factors are exacerbated in the modeling by natural climate variability and may be further exacerbated by climate change. Our modeling suggests that these growth dynamics combine to create long-term water scarcity in Egypt, regardless of the Ethiopian project. All else being equal, filling strategies that employ slow fill rates for the GERD (e.g., 8 to 13 years) may mitigate the risks in future scenarios for Egypt somewhat, but no policy or action regarding the GERD is likely to significantly alleviate the projected water scarcity in Egypt's Nile Basin. However, general beliefs among the Egyptian populace regarding the GERD as a major contributing factor for scarcities in Egypt could make Ethiopia a scapegoat for Egyptian grievances -- contributing to social unrest in Egypt and generating undesirable (and unnecessary) tension between these two countries. Such tension could threaten the constructive relationships between Egypt and Ethiopia that are vital to maintaining stability and security within and between their respective regional spheres of influence, Middle East and North Africa, and the Horn of Africa.
The current expansion of natural gas (NG) development in the United States requires an understanding of how this change will affect the natural gas industry, downstream consumers, and economic growth in order to promote effective planning and policy development. The impact of this expansion may propagate through the NG system and US economy via changes in manufacturing, electric power generation, transportation, commerce, and increased exports of liquefied natural gas. We conceptualize this problem as supply shock propagation that pushes the NG system and the economy away from its current state of infrastructure development and level of natural gas use. To illustrate this, the project developed two core modeling approaches. The first is an Agent-Based Modeling (ABM) approach which addresses shock propagation throughout the existing natural gas distribution system. The second approach uses a System Dynamics-based model to illustrate the feedback mechanisms related to finding new supplies of natural gas - notably shale gas - and how those mechanisms affect exploration investments in the natural gas market with respect to proven reserves. The ABM illustrates several stylized scenarios of large liquefied natural gas (LNG) exports from the U.S. The ABM preliminary results demonstrate that such scenario is likely to have substantial effects on NG prices and on pipeline capacity utilization. Our preliminary results indicate that the price of natural gas in the U.S. may rise by about 50% when the LNG exports represent 15% of the system-wide demand. The main findings of the System Dynamics model indicate that proven reserves for coalbed methane, conventional gas and now shale gas can be adequately modeled based on a combination of geologic, economic and technology-based variables. A base case scenario matches historical proven reserves data for these three types of natural gas. An environmental scenario, based on implementing a $50/tonne CO 2 tax results in less proven reserves being developed in the coming years while demand may decrease in the absence of acceptable substitutes, incentives or changes in consumer behavior. An increase in demand of 25% increases proven reserves being developed by a very small amount by the end of the forecast period of 2025.
Adaptation is believed to be a source of resilience in systems. It has been difficult to measure the contribution of adaptation to resilience, unlike other resilience mechanisms such as restoration and recovery. One difficulty comes from treating adaptation as a deus ex machina that is interjected after a disruption. This provides no basis for bounding possible adaptive responses. We can bracket the possible effects of adaptation when we recognize that it occurs continuously, and is in part responsible for the current system’s properties. In this way the dynamics of the system’s pre-disruption structure provides information about post-disruption adaptive reaction. Seen as an ongoing process, adaptation has been argued to produce “robust-yet-fragile” systems. Such systems perform well under historical stresses but become committed to specific features of those stresses in a way that makes them vulnerable to system-level collapse when those features change. In effect adaptation lessens the cost of disruptions within a certain historical range, at the expense of increased cost from disruptions outside that range. Historical adaptive responses leave a signature in the structure of the system. Studies of ecological networks have suggested structural metrics that pick out systemic resilience in the underlying ecosystems. If these metrics are generally reliable indicators of resilience they provide another strategy for gaging adaptive resilience. To progress in understanding how the process of adaptation and the property of resilience interrelate in infrastructure systems, we pose some specific questions: Does adaptation confer resilience?; Does it confer resilience to novel shocks as well, or does it tune the system to fragility?; Can structural features predict resilience to novel shocks?; Are there policies or constraints on the adaptive process that improve resilience?.
As with other large healthcare organizations, medical adverse events at the Department of Veterans Affairs (VA) facilities can expose patients to unforeseen negative risks. VHA leadership recognizes that properly handled disclosure of adverse events can minimize potential harm to patients and negative consequences for the effective functioning of the organization. The work documented here seeks to help improve the disclosure process by situating it within the broader theoretical framework of issues management, and to identify opportunities for process improvement through modeling disclosure and reactions to disclosure. The computational model will allow a variety of disclosure actions to be tested across a range of incident scenarios. Our conceptual model will be refined in collaboration with domain experts, especially by continuing to draw on insights from VA Study of the Communication of Adverse Large-Scale Events (SCALE) project researchers.
Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.
Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which must be recognized and reckoned with to design a secure future for the nation and the world. Design within CASoS requires the fostering of a new discipline, CASoS Engineering, and the building of capability to support it. Towards this primary objective, we created the Phoenix Pilot as a crucible from which systemization of the new discipline could emerge. Using a wide range of applications, Phoenix has begun building both theoretical foundations and capability for: the integration of Applications to continuously build common understanding and capability; a Framework for defining problems, designing and testing solutions, and actualizing these solutions within the CASoS of interest; and an engineering Environment required for 'the doing' of CASoS Engineering. In a secondary objective, we applied CASoS Engineering principles to begin to build a foundation for design in context of Global CASoS
Infrastructures are networks of dynamically interacting systems designed for the flow of information, energy, and materials. Under certain circumstances, disturbances from a targeted attack or natural disasters can cause cascading failures within and between infrastructures that result in significant service losses and long recovery times. Reliable interdependency models that can capture such multi-network cascading do not exist. The research reported here has extended Sandia's infrastructure modeling capabilities by: (1) addressing interdependencies among networks, (2) incorporating adaptive behavioral models into the network models, and (3) providing mechanisms for evaluating vulnerability to targeted attack and unforeseen disruptions. We have applied these capabilities to evaluate the robustness of various systems, and to identify factors that control the scale and duration of disruption. This capability lays the foundation for developing advanced system security solutions that encompass both external shocks and internal dynamics.
Complex Adaptive Systems of Systems, or CASoS, are vastly complex eco-socio-economic-technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to highly-saturated interdependencies and allied vulnerabilities to cascades in associated systems. The Phoenix initiative approaches this high-impact problem space as engineers, devising interventions (problem solutions) that influence CASoS to achieve specific aspirations. CASoS embody the world's biggest problems and greatest opportunities: applications to real world problems are the driving force of our effort. We are developing engineering theory and practice together to create a discipline that is grounded in reality, extends our understanding of how CASoS behave, and allows us to better control those behaviors. Through application to real-world problems, Phoenix is evolving CASoS Engineering principles while growing a community of practice and the CASoS engineers to populate it.
Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to pervasive interdependencies and attendant vulnerabilities to cascades in associated systems. Phoenix was initiated to address this high-impact problem space as engineers. Our overarching goals are maximizing security, maximizing health, and minimizing risk. We design interventions, or problem solutions, that influence CASoS to achieve specific aspirations. Through application to real-world problems, Phoenix is evolving the principles and discipline of CASoS Engineering while growing a community of practice and the CASoS engineers to populate it. Both grounded in reality and working to extend our understanding and control of that reality, Phoenix is at the same time a solution within a CASoS and a CASoS itself.
Modern society's physical health depends vitally upon a number of real, interdependent, critical infrastructure networks that deliver power, petroleum, natural gas,water, and communications. Its economic health depends on a number of other infrastructure networks, some virtual and some real, that link residences, industries, commercial sectors, and transportation sectors. The continued prosperity and national security of the US depends on our ability to understand the vulnerabilities of and analyze the performance of both the individual infrastructures and the entire interconnected system of infrastructures. Only then can we respond to potential disruptions in a timely and effective manner. Collaborative efforts among Sandia, other government agencies, private industry, and academia have resulted in realistic models for many of the individual component infrastructures. In this paper, we propose an innovative modeling and analysis framework to study the entire system of physical and economic infrastructures. That framework uses the existing individual models together with system dynamics, functional models, and nonlinear optimization algorithms. We describe this framework and demonstrate its potential use to analyze, and propose a response for, a hypothetical disruption.
Concepts from Complexity Science are valuable and allow a simulation approach for critical infrastructures that is flexible and has wide ranging applications.
The fast and unrelenting spread of wireless telecommunication devices has changed the landscape of the telecommunication world, as we know it. Today we find that most users have access to both wireline and wireless communication devices. This widespread availability of alternate modes of communication is adding, on one hand, to a redundancy in networks, yet, on the other hand, has cross network impacts during overloads and disruptions. This being the case, it behooves network designers and service providers to understand how this redundancy works so that it can be better utilized in emergency conditions where the need for redundancy is critical. In this paper, we examine the scope of this redundancy as expressed by telecommunications availability to users under different failure scenarios. We quantify the interaction of wireline and wireless networks during network failures and traffic overloads. Developed as part of a Department of Homeland Security Infrastructure Protection (DHS IP) project, the Network Simulation Modeling and Analysis Research Tool (N-SMART) was used to perform this study. The product of close technical collaboration between the National Infrastructure Simulation and Analysis Center (NISAC) and Lucent Technologies, N-SMART supports detailed wireline and wireless network simulations and detailed user calling behavior.
Critical Infrastructures are formed by a large number of components that interact within complex networks. As a rule, infrastructures contain strong feedbacks either explicitly through the action of hardware/software control, or implicitly through the action/reaction of people. Individual infrastructures influence others and grow, adapt, and thus evolve in response to their multifaceted physical, economic, cultural, and political environments. Simply put, critical infrastructures are complex adaptive systems. In the Advanced Modeling and Techniques Investigations (AMTI) subgroup of the National Infrastructure Simulation and Analysis Center (NISAC), we are studying infrastructures as complex adaptive systems. In one of AMTI's efforts, we are focusing on cascading failure as can occur with devastating results within and between infrastructures. Over the past year we have synthesized and extended the large variety of abstract cascade models developed in the field of complexity science and have started to apply them to specific infrastructures that might experience cascading failure. In this report we introduce our comprehensive model, Polynet, which simulates cascading failure over a wide range of network topologies, interaction rules, and adaptive responses as well as multiple interacting and growing networks. We first demonstrate Polynet for the classical Bac, Tang, and Wiesenfeld or BTW sand-pile in several network topologies. We then apply Polynet to two very different critical infrastructures: the high voltage electric power transmission system which relays electricity from generators to groups of distribution-level consumers, and Fedwire which is a Federal Reserve service for sending large-value payments between banks and other large financial institutions. For these two applications, we tailor interaction rules to represent appropriate unit behavior and consider the influence of random transactions within two stylized networks: a regular homogeneous array and a heterogeneous scale-free (fractal) network. For the stylized electric power grid, our initial simulations demonstrate that the addition of geographically unrestricted random transactions can eventually push a grid to cascading failure, thus supporting the hypothesis that actions of unrestrained power markets (without proper security coordination on market actions) can undermine large scale system stability. We also find that network topology greatly influences system robustness. Homogeneous networks that are 'fish-net' like can withstand many more transaction perturbations before cascading than can scale-free networks. Interestingly, when the homogeneous network finally cascades, it tends to fail in its entirety, while the scale-free tends to compartmentalize failure and thus leads to smaller, more restricted outages. In the case of stylized Fedwire, initial simulations show that as banks adaptively set their individual reserves in response to random transactions, the ratio of the total volume of transactions to individual reserves, or 'turnover ratio', increases with increasing volume. The removal of a bank from interaction within the network then creates a cascade, its speed of propagation increasing as the turnover ratio increases. We also find that propagation is accelerated by patterned transactions (as expected to occur within real markets) and in scale-free networks, by the 'attack' of the most highly connected bank. These results suggest that the time scale for intervention by the Federal Reserve to divert a cascade in Fedwire may be quite short. Ongoing work in our cascade analysis effort is building on both these specific stylized applications to enhance their fidelity as well as embracing new applications. We are implementing markets and additional network interactions (e.g., social, telecommunication, information gathering, and control) that can impose structured drives (perturbations) comparable to those seen in real systems. Understanding the interaction of multiple networks, their interdependencies, and in particular, the underlying mechanisms for their growth/evolution is paramount. With this understanding, appropriate public policy can be identified to guide the evolution of present infrastructures to withstand the demands and threats of the future.
The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 12 other measures of environmental impact. It includes historical data from 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2001 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of ''what if'' scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.