Publications

156 Results
Skip to search filters

Proton Tunable Analog Transistor for Low Power Computing

Robinson, Donald A.; Foster, Michael R.; Bennett, Christopher H.; Bhandarkar, Austin B.; Fuller, Elliot J.; Stavila, Vitalie S.; Spataru, Dan C.; Krishnakumar, Raga K.; Cole-Filipiak, Neil C.; Schrader, Paul E.; Ramasesha, Krupa R.; Allendorf, Mark D.; Talin, A.A.

This project was broadly motivated by the need for new hardware that can process information such as images and sounds right at the point of where the information is sensed (e.g. edge computing). The project was further motivated by recent discoveries by group demonstrating that while certain organic polymer blends can be used to fabricate elements of such hardware, the need to mix ionic and electronic conducting phases imposed limits on performance, dimensional scalability and the degree of fundamental understanding of how such devices operated. As an alternative to blended polymers containing distinct ionic and electronic conducting phases, in this LDRD project we have discovered that a family of mixed valence coordination compounds called Prussian blue analogue (PBAs), with an open framework structure and ability to conduct both ionic and electronic charge, can be used for inkjet-printed flexible artificial synapses that reversibly switch conductance by more than four orders of magnitude based on electrochemically tunable oxidation state. Retention of programmed states is improved by nearly two orders of magnitude compared to the extensively studied organic polymers, thus enabling in-memory compute and avoiding energy costly off-chip access during training. We demonstrate dopamine detection using PBA synapses and biocompatibility with living neurons, evoking prospective application for brain - computer interfacing. By application of electron transfer theory to in-situ spectroscopic probing of intervalence charge transfer, we elucidate a switching mechanism whereby the degree of mixed valency between N-coordinated Ru sites controls the carrier concentration and mobility, as supported by density functional theory (DFT) .

More Details

The effect of 10 at.% Al addition on the hydrogen storage properties of the Ti0.33V0.33Nb0.33 multi-principal element alloy

Intermetallics

Pineda-Romero, Nayely; Witman, Matthew; Stavila, Vitalie S.; Zlotea, Claudia

We report here a thorough study on the effect of 10 at.% Al addition into the ternary equimolar Ti0.33V0.33Nb0.33 alloy on the hydrogen storage properties. Despite a decrease of the storage capacity by 20%, several other properties are enhanced by the presence of Al. The hydride formation is destabilized in the quaternary alloy as compared to the pristine ternary composition, as also confirmed by machine learning approach. The hydrogen desorption occurs at lower temperature in the Al-containing alloy relative to the initial material. Moreover, the Al presence improves the stability during hydrogen absorption/desorption cycling without significant loss of the capacity and phase segregation. This study proves that Al addition into multi-principal element alloys is a promising strategy for the design of novel materials for hydrogen storage.

More Details

Magnesium- and intermetallic alloys-based hydrides for energy storage: Modelling, synthesis and properties

Progress in Energy

Pasquini, Luca; Sakaki, Kouji; Akiba, Etsuo; Allendorf, Mark D.; Alvares, Ebert; Ares, Josè R.; Babai, Dotan; Baricco, Marcello; Bellosta Von Colbe, Josè; Bereznitsky, Matvey; Buckley, Craig E.; Cho, Young W.; Cuevas, Fermin; De Rango, Patricia; Dematteis, Erika M.; Denys, Roman V.; Dornheim, Martin; Fernández, J.F.; Hariyadi, Arif; Hauback, Bjørn C.; Heo, Tae W.; Hirscher, Michael; Humphries, Terry D.; Huot, Jacques; Jacob, Isaac; Jensen, Torben R.; Jerabek, Paul; Kang, Shin Y.; Keilbart, Nathan; Kim, Hyunjeong; Latroche, Michel; Leardini, F.; Li, Haiwen; Ling, Sanliang; Lototskyy, Mykhaylo V.; Mullen, Ryan; Orimo, Shin I.; Paskevicius, Mark; Pistidda, Claudio; Polanski, Marek; Puszkiel, Julián; Rabkin, Eugen; Sahlberg, Martin; Sartori, Sabrina; Santhosh, Archa; Sato, Toyoto; Shneck, Roni Z.; Sørby, Magnus H.; Shang, Yuanyuan; Stavila, Vitalie S.; Suh, Jin Y.; Suwarno, Suwarno; Thi Thu, Le; Wan, Liwen F.; Webb, Colin J.; Witman, Matthew; Wan, Chubin; Wood, Brandon C.; Yartys, Volodymyr A.

Hydrides based on magnesium and intermetallic compounds provide a viable solution to the challenge of energy storage from renewable sources, thanks to their ability to absorb and desorb hydrogen in a reversible way with a proper tuning of pressure and temperature conditions. Therefore, they are expected to play an important role in the clean energy transition and in the deployment of hydrogen as an efficient energy vector. This review, by experts of Task 40 'Energy Storage and Conversion based on Hydrogen' of the Hydrogen Technology Collaboration Programme of the International Energy Agency, reports on the latest activities of the working group 'Magnesium- and Intermetallic alloys-based Hydrides for Energy Storage'. The following topics are covered by the review: multiscale modelling of hydrides and hydrogen sorption mechanisms; synthesis and processing techniques; catalysts for hydrogen sorption in Mg; Mg-based nanostructures and new compounds; hydrides based on intermetallic TiFe alloys, high entropy alloys, Laves phases, and Pd-containing alloys. Finally, an outlook is presented on current worldwide investments and future research directions for hydrogen-based energy storage.

More Details

From n- To p-Type Material: Effect of Metal Ion on Charge Transport in Metal-Organic Materials

ACS Applied Materials and Interfaces

Yoon, Sungwon; Talin, A.A.; Stavila, Vitalie S.; Mroz, Austin M.; Bennett, Thomas D.; He, Yuping; Keen, David A.; Hendon, Christopher H.; Allendorf, Mark D.; So, Monica C.

An intriguing new class of two-dimensional (2D) materials based on metal-organic frameworks (MOFs) has recently been developed that displays electrical conductivity, a rarity among these nanoporous materials. The emergence of conducting MOFs raises questions about their fundamental electronic properties, but few studies exist in this regard. Here, we present an integrated theory and experimental investigation to probe the effects of metal substitution on the charge transport properties of M-HITP, where M = Ni or Pt and HITP = 2,3,6,7,10,11-hexaiminotriphenylene. The results show that the identity of the M-HITP majority charge carrier can be changed without intentional introduction of electronically active dopants. We observe that the selection of the metal ion substantially affects charge transport. Using the known structure, Ni-HITP, we synthesized a new amorphous material, a-Pt-HITP, which although amorphous is nevertheless found to be porous upon desolvation. Importantly, this new material exhibits p-type charge transport behavior, unlike Ni-HITP, which displays n-type charge transport. These results demonstrate that both p- and n-type materials can be achieved within the same MOF topology through appropriate choice of the metal ion.

More Details

Tailored porous carbons enabled by persistent micelles with glassy cores

Materials Advances

Williams, Eric R.; McMahon, Paige L.; Reynolds, Joseph E.; Snider, Jonathan L.; Stavila, Vitalie S.; Allendorf, Mark D.; Stefik, Morgan

Porous nanoscale carbonaceous materials are widely employed for catalysis, separations, and electrochemical devices where device performance often relies upon specific and well-defined regular feature sizes. The use of block polymers as templates has enabled affordable and scalable production of diverse porous carbons. However, popular carbon preparations use equilibrating micelles which can change dimensions in response to the processing environment. Thus, polymer methods have not yet demonstrated carbon nanomaterials with constant average template diameter and tailored wall thickness. In contrast, persistent micelle templates (PMTs) use kinetic control to preserve constant micelle template diameters, and thus PMT has enabled constant pore diameter metrics. With PMT, the wall thickness is independently adjustable via the amount of material precursor added to the micelle templates. Previous PMT demonstrations relied upon thermodynamic barriers to inhibit chain exchange while in solution, followed by rapid evaporation and cross-linking of material precursors to mitigate micelle reorganization once the solvent evaporated. It is shown here that this approach, however, fails to deliver kinetic micelle control when used with slowly cross-linking material precursors such as those for porous carbons. A new modality for kinetic control over micelle templates, glassy-PMTs, is shown using an immobilized glassy micelle core composed of polystyrene (PS). Although PS based polymers have been used to template carbon materials before, all prior reports included plasticizers that prevented kinetic micelle control. Here the key synthetic conditions for carbon materials with glassy-PMT control are enumerated, including dependencies upon polymer block selection, block molecular mass, solvent selection, and micelle processing timeline. The use of glassy-PMTs also enables the direct observation of micelle cores by TEM which are shown to be commensurate with template dimensions. Glassy-PMTs are thus robust and insensitive to material processing kinetics, broadly enabling tailored nanomaterials with diverse chemistries.

More Details

Stabilized open metal sites in bimetallic metal-organic framework catalysts for hydrogen production from alcohols

Journal of Materials Chemistry A

Snider, Jonathan L.; Su, Ji; Verma, Pragya; El Gabaly Marquez, Farid E.; Sugar, Joshua D.; Chen, Luning; Chames, Jeffery M.; Talin, A.A.; Dun, Chaochao; Urban, Jeffrey J.; Stavila, Vitalie S.; Prendergast, David; Somorjai, Gabor A.; Allendorf, Mark D.

Liquid organic hydrogen carriers such as alcohols and polyols are a high-capacity means of transporting and reversibly storing hydrogen that demands effective catalysts to drive the (de)hydrogenation reactions under mild conditions. We employed a combined theory/experiment approach to develop MOF-74 catalysts for alcohol dehydrogenation and examine the performance of the open metal sites (OMS), which have properties analogous to the active sites in high-performance single-site catalysts and homogeneous catalysts. Methanol dehydrogenation was used as a model reaction system for assessing the performance of five monometallic M-MOF-74 variants (M = Co, Cu, Mg, Mn, Ni). Co-MOF-74 and Ni-MOF-74 give the highest H2 productivity. However, Ni-MOF-74 is unstable under reaction conditions and forms metallic nickel particles. To improve catalyst activity and stability, bimetallic (NixMg1-x)-MOF-74 catalysts were developed that stabilize the Ni OMS and promote the dehydrogenation reaction. An optimal composition exists at (Ni0.32Mg0.68)-MOF-74 that gives the greatest H2 productivity, up to 203 mL gcat-1 min-1 at 300 °C, and maintains 100% selectivity to CO and H2 between 225-275 °C. The optimized catalyst is also active for the dehydrogenation of other alcohols. DFT calculations reveal that synergistic interactions between the open metal site and the organic linker lead to lower reaction barriers in the MOF catalysts compared to the open metal site alone. This work expands the suite of hydrogen-related reactions catalyzed by MOF-74 which includes recent work on hydroformulation and our earlier reports of aryl-ether hydrogenolysis. Moreover, it highlights the use of bimetallic frameworks as an effective strategy for stabilizing a high density of catalytically active open metal sites. This journal is

More Details

Progress, Challenges, and Opportunities in the Synthesis, Characterization, and Application of Metal-Boride-Derived Two-Dimensional Nanostructures

ACS Materials Letters

Gunda, Harini; Klebanoff, Leonard E.; Sharma, Peter A.; Varma, Akash K.; Dolia, Varun; Jasuja, Kabeer; Stavila, Vitalie S.

Two-dimensional (2D) metal-boride-derived nanostructures have been a focus of intense research for the past decade, with an emphasis on new synthetic approaches, as well as on the exploration of possible applications in next-generation advanced materials and devices. Their unusual mechanical, electronic, optical, and chemical properties, arising from low dimensionality, present a new paradigm to the science of metal borides that has traditionally focused on their bulk properties. This Perspective discusses the current state of research on metal-boride-derived 2D nanostructures, highlights challenges that must be overcome, and identifies future opportunities to fully utilize their potential.

More Details

Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors

Advanced Materials

Jayaramulu, Kolleboyina; Horn, Michael; Schneemann, Andreas; Saini, Haneesh; Bakandritsos, Aristides; Ranc, Vaclav; Petr, Martin; Stavila, Vitalie S.; Narayana, Chandrabhas; Scheibe, Błażej; Kment, Štěpán; Otyepka, Michal; Motta, Nunzio; Dubal, Deepak; Zbořil, Radek; Fischer, Roland A.

In this work, the covalent attachment of an amine functionalized metal-organic framework (UiO-66-NH2 = Zr6O4(OH)4(bdc-NH2)6; bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) (UiO-Universitetet i Oslo) to the basal-plane of carboxylate functionalized graphene (graphene acid = GA) via amide bonds is reported. The resultant GA@UiO-66-NH2 hybrid displayed a large specific surface area, hierarchical pores and an interconnected conductive network. The electrochemical characterizations demonstrated that the hybrid GA@UiO-66-NH2 acts as an effective charge storing material with a capacitance of up to 651 F g−1, significantly higher than traditional graphene-based materials. The results suggest that the amide linkage plays a key role in the formation of a π-conjugated structure, which facilitates charge transfer and consequently offers good capacitance and cycling stability. Furthermore, to realize the practical feasibility, an asymmetric supercapacitor using a GA@UiO-66-NH2 positive electrode with Ti3C2TX MXene as the opposing electrode has been constructed. The cell is able to deliver a power density of up to 16 kW kg−1 and an energy density of up to 73 Wh kg−1, which are comparable to several commercial devices such as Pb-acid and Ni/MH batteries. Under an intermediate level of loading, the device retained 88% of its initial capacitance after 10 000 cycles.

More Details

Design principles for the ultimate gas deliverable capacity material: Nonporous to porous deformations without volume change

Molecular Systems Design and Engineering

Witman, Matthew; Ling, Sanliang; Stavila, Vitalie S.; Wijeratne, Pavithra; Furukawa, Hiroyasu; Allendorf, Mark D.

Understanding the fundamental limits of gas deliverable capacity in porous materials is of critical importance as it informs whether technical targets (e.g., for on-board vehicular storage) are feasible. High-throughput screening studies of rigid materials, for example, have shown they are not able to achieve the original ARPA-E methane storage targets, yet an interesting question remains: what is the upper limit of deliverable capacity in flexible materials? In this work we develop a statistical adsorption model that specifically probes the limit of deliverable capacity in intrinsically flexible materials. The resulting adsorption thermodynamics indicate that a perfectly designed, intrinsically flexible nanoporous material could achieve higher methane deliverable capacity than the best benchmark systems known to date with little to no total volume change. Density functional theory and grand canonical Monte Carlo simulations identify a known metal-organic framework (MOF) that validates key features of the model. Therefore, this work (1) motivates a continued, extensive effort to rationally design a porous material analogous to the adsorption model and (2) calls for continued discovery of additional high deliverable capacity materials that remain hidden from rigid structure screening studies due to nominal non-porosity.

More Details

On the fatigue crack growth behavior of Ti–10V–2Fe–3Al in gaseous hydrogen

International Journal of Hydrogen Energy

Harris, Zachary D.; Ronevich, Joseph A.; Stavila, Vitalie S.; Somerday, Brian P.

The fatigue crack growth behavior of Ti–10V–2Fe–3Al in gaseous hydrogen (H2) was assessed through comparative experiments conducted in laboratory air and 8.3 MPa H2. The measured fatigue crack growth rate (da/dN) versus applied stress intensity factor range (ΔK) relationships and observed fracture morphologies for laboratory air and H2 were comparable up to ΔK ≈ 6.9 MPa√m, when tested at a load ratio of 0.1 and frequency of 10 Hz. At higher ΔK values, significant crack deflection and subsequent catastrophic failure occurred in the specimen tested in H2. This degradation was not observed in a specimen pre-exposed to 8.3 MPa H2 for 96 h and then immediately tested in laboratory air. X-ray diffraction of the failed H2-tested specimen revealed that the material remnants were predominantly composed of TiH2, suggesting that hydride formation was the catalyst for catastrophic failure in H2. The mechanistic implications of these results and their impact on current material compatibility assessments for Ti alloys in hydrogen service are then discussed.

More Details

Melting of Magnesium Borohydride under High Hydrogen Pressure: Thermodynamic Stability and Effects of Nanoconfinement

Chemistry of Materials

White, James L.; Strange, Nicholas A.; Sugar, Joshua D.; Snider, Jonathan S.; Schneemann, Andreas; Lipton, Andrew S.; Toney, Michael F.; Allendorf, Mark D.; Stavila, Vitalie S.

The thermodynamic stability and melting point of magnesium borohydride were probed under hydrogen pressures up to 1000 bar (100 MPa) and temperatures up to 400 °C. At 400 °C, Mg(BH4)2 was found to be chemically stable between 700 and 1000 bar H2, whereas under 350 bar H2 or lower pressures, the bulk material partially decomposed into MgH2 and MgB12H12. The melting point of solvent-free Mg(BH4)2 was estimated to be 367-375 °C, which was above previously reported values by 40-90 °C. Our results indicated that a high hydrogen backpressure is needed to prevent the decomposition of Mg(BH4)2 before measuring the melting point and that molten Mg(BH4)2 can exist as a stable liquid phase between 367 and 400 °C under hydrogen overpressures of 700 bar or above. The occurrence of a pure molten Mg(BH4)2 phase enabled efficient melt-infiltration of Mg(BH4)2 into the pores of porous templated carbons (CMK-3 and CMK-8) and graphene aerogels. Both transmission electron microscopy and small-angle X-ray scattering confirmed efficient incorporation of the borohydride into the carbon pores. The Mg(BH4)2@carbon samples exhibited comparable hydrogen capacities to bulk Mg(BH4)2 upon desorption up to 390 °C based on the mass of the active component; the onset of hydrogen release was reduced by 15-25 °C compared to the bulk. Importantly, melt-infiltration under hydrogen pressure was shown to be an efficient way to introduce metal borohydrides into the pores of carbon-based materials, helping to prevent particle agglomeration and formation of stable closo-polyborate byproducts.

More Details

Imaging the Phase Evolution of the Li-N-H Hydrogen Storage System

Advanced Materials Interfaces

White, James L.; Baker, Alexander A.; Marcus, Matthew A.; Snider, Jonathan L.; Wang, Timothy C.; Lee, Jonathan R.; Allendorf, Mark D.; Stavila, Vitalie S.; El Gabaly Marquez, Farid E.

Complex metal hydrides provide high-density hydrogen storage, which is essential for vehicular applications. However, the utility of these materials has been limited by thermodynamic and kinetic barriers present during the dehydrogenation and rehydrogenation processes as new phases form inside parent phases. Better understanding of the mixed-phase mesostructures and their interfaces may assist in improving cyclability. In this work, the evolution of the phases during hydrogenation of lithium nitride and dehydrogenation of lithium amide with lithium hydride are probed with scanning-transmission X-ray microscopy at the nitrogen K edge. With this technique, intriguing core-shell structures were observed in particles of both partially hydrogenated Li3N and partially dehydrogenated LiNH2 + 2 LiH. The potential contributions of both internal hydrogen mobility and interfacial energies on the generation of these structures are discussed.

More Details

Extracting an Empirical Intermetallic Hydride Design Principle from Limited Data via Interpretable Machine Learning

Journal of Physical Chemistry Letters

Witman, Matthew; Ling, Sanliang; Grant, David M.; Walker, Gavin S.; Agarwal, Sapan A.; Stavila, Vitalie S.; Allendorf, Mark D.

An open question in the metal hydride community is whether there are simple, physics-based design rules that dictate the thermodynamic properties of these materials across the variety of structures and chemistry they can exhibit. While black box machine learning-based algorithms can predict these properties with some success, they do not directly provide the basis on which these predictions are made, therefore complicating the a priori design of novel materials exhibiting a desired property value. In this work we demonstrate how feature importance, as identified by a gradient boosting tree regressor, uncovers the strong dependence of the metal hydride equilibrium H2 pressure on a volume-based descriptor that can be computed from just the elemental composition of the intermetallic alloy. Elucidation of this simple structure-property relationship is valid across a range of compositions, metal substitutions, and structural classes exhibited by intermetallic hydrides. This permits rational targeting of novel intermetallics for high-pressure hydrogen storage (low-stability hydrides) by their descriptor values, and we predict a known intermetallic to form a low-stability hydride (as confirmed by density functional theory calculations) that has not yet been experimentally investigated.

More Details

Electrolyte-Assisted Hydrogen Storage Reactions

Journal of Physical Chemistry C

Vajo, John J.; Tan, Hongjin; Ahn, Channing C.; Addison, Dan; Hwang, Son J.; White, James L.; Wang, Timothy C.; Stavila, Vitalie S.; Graetz, Jason

Use of electrolytes, in the form of LiBH4/KBH4 and LiI/KI/CsI eutectics, is shown to significantly improve (by more than a factor of 10) both the dehydrogenation and full rehydrogenation of the MgH2/Sn destabilized hydride system and the hydrogenation of MgB2 to Mg(BH4)2. The improvement revealed that interparticle transport of atoms heavier than hydrogen can be an important rate-limiting step during hydrogen cycling in hydrogen storage materials consisting of multiple phases in powder form. Electrolytes enable solubilizing heavy ions into a liquid environment and thereby facilitate the reaction over full surface areas of interacting particles. The examples presented suggest that use of electrolytes in the form of eutectics, ionic liquids, or solvents containing dissolved salts may be generally applicable for increasing reaction rates in complex and destabilized hydride materials.

More Details

Surface Morphology and Electrical Properties of Cu3BTC2 Thin Films before and after Reaction with TCNQ

ACS Applied Materials and Interfaces

Thurmer, Konrad T.; Schneider, Christian; Stavila, Vitalie S.; Friddle, Raymond W.; Leonard, Francois L.; Fischer, Roland A.; Allendorf, Mark D.; Talin, A.A.

HKUST-1 or Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate) is a prototypical metal-organic framework (MOF) that holds a privileged position among MOFs for device applications, as it can be deposited as thin films on various substrates and surfaces. Recently, new potential applications in electronics have emerged for this material when HKUST-1 was demonstrated to become electrically conductive upon infiltration with 7,7,8,8-tetracyanoquinodimethane (TCNQ). However, the factors that control the morphology and reactivity of the thin films are unknown. Here, we present a study of the thin-film growth process on indium tin oxide and amorphous Si prior to infiltration. From the unusual bimodal, non-log-normal distribution of crystal domain sizes, we conclude that the nucleation of new layers of Cu3BTC2 is greatly enhanced by surface defects and thus difficult to control. We then show that these films can react with methanolic TCNQ solutions to form dense films of the coordination polymer Cu(TCNQ). This chemical conversion is accompanied by dramatic changes in surface morphology, from a surface dominated by truncated octahedra to randomly oriented thin platelets. The change in morphology suggests that the chemical reaction occurs in the liquid phase and is independent of the starting surface morphology. The chemical transformation is accompanied by 10 orders of magnitude change in electrical conductivity, from <10-11 S/cm for the parent Cu3BTC2 material to 10-1 S/cm for the resulting Cu(TCNQ) film. The conversion of Cu3BTC2 films, which can be grown and patterned on a variety of (nonplanar) substrates, to Cu(TCNQ) opens the door for the facile fabrication of more complex electronic devices.

More Details

Role of Surface Oxidation in the Dehydrogenation of Complex Metal Hydrides

White, James L.; Rowberg, Andrew J.; Wan, Liwen F.; Kang, ShinYoung K.; Ogitsu, Tadashi O.; Kolasinski, Robert K.; Whaley, Josh A.; Wang, Timothy C.; Baker, Alexander A.; Lee, Jonathan R.; Liu, Yi-Sheng L.; Guo, Jinghua G.; Stavila, Vitalie S.; Prendergast, David P.; Bluhm, Hendrik B.; Allendorf, Mark D.; Wood, Brandon C.; El Gabaly Marquez, Farid E.

Abstract not provided.

Critical Factors in Computational Characterization of Hydrogen Storage in Metal-Organic Frameworks

Journal of Physical Chemistry C

Camp, Jeffrey; Stavila, Vitalie S.; Allendorf, Mark D.; Prendergast, David; Haranczyk, Maciej

Inconsistencies in high-pressure H2 adsorption data and a lack of comparative experiment-theory studies have made the evaluation of both new and existing metal-organic frameworks (MOFs) challenging in the context of hydrogen storage applications. In this work, we performed grand canonical Monte Carlo (GCMC) simulations in nearly 500 experimentally refined MOF structures to examine the variance in simulation results because of the equation of state, H2 potential, and the effect of density functional theory structural optimization. We find that hydrogen capacity at 77 K and 100 bar, as well as hydrogen 100-to-5 bar deliverable capacity, is correlated more strongly with the MOF pore volume than with the MOF surface area (the latter correlation is known as the Chahine's rule). The tested methodologies provide consistent rankings of materials. In addition, four prototypical MOFs (MOF-74, CuBTC, ZIF-8, and MOF-5) with a range of surface areas, pore structures, and surface chemistries, representative of promising adsorbents for hydrogen storage, are evaluated in detail with both GCMC simulations and experimental measurements. Simulations with a three-site classical potential for H2 agree best with our experimental data except in the case of MOF-5, in which H2 adsorption is best replicated with a five-site potential. However, for the purpose of ranking materials, these two choices for H2 potential make little difference. More significantly, 100 bar loading estimates based on more accurate equations of state for the vapor-liquid equilibrium yield the best comparisons with the experiment.

More Details

Hybrid Polymer/Metal-Organic Framework Films for Colorimetric Water Sensing over a Wide Concentration Range

ACS Applied Materials and Interfaces

Ullman, Andrew M.; Jones, Christopher G.; Doty, F.P.; Stavila, Vitalie S.; Talin, A.A.; Allendorf, Mark D.

Because of their extraordinary surface areas and tailorable porosity, metal-organic frameworks (MOFs) have the potential to be excellent sensors of gas-phase analytes. MOFs with open metal sites are particularly attractive for detecting Lewis basic atmospheric analytes, such as water. Here, we demonstrate that thin films of the MOF HKUST-1 can be used to quantitatively determine the relative humidity (RH) of air using a colorimetric approach. HKUST-1 thin films are spin-coated onto rigid or flexible substrates and are shown to quantitatively determine the RH within the range of 0.1-5% RH by either visual observation or a straightforward optical reflectivity measurement. At high humidity (>10% RH), a polymer/MOF bilayer is used to slow the transport of H2O to the MOF film, enabling quantitative determination of RH using time as the distinguishing metric. Finally, the sensor is combined with an inexpensive light-emitting diode light source and Si photodiode detector to demonstrate a quantitative humidity detector for low humidity environments.

More Details

Identifying the Role of Dynamic Surface Hydroxides in the Dehydrogenation of Ti-Doped NaAlH4

Proposed for publication

White, James L.; Rowberg, Andrew J.; Wan, Liwen F.; Kang, ShinYoung K.; Ogitsu, Tadashi O.; Kolasinski, Robert K.; Whaley, Josh A.; Baker, Alexander A.; Lee, Jonathan R.; Liu, Yi-Sheng L.; Trotochaud, Lena T.; Guo, Jinghua G.; Stavila, Vitalie S.; Prendergast, David P.; Bluhm, Hendrik B.; Allendorf, Mark D.; Wood, Brandon C.; El Gabaly Marquez, Farid E.

Abstract not provided.

Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale

Nano Letters

Chae, Jungseok; An, Sangmin; Ramer, Georg; Stavila, Vitalie S.; Holland, Glenn; Yoon, Yohan; Talin, A.A.; Allendorf, Mark D.; Aksyuk, Vladimir A.; Centrone, Andrea

The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscale in photothermal induced resonance experiments. The intrinsic η of metal-organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. Our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.

More Details

Molecule@MOF: A New Class of Opto-electronic Materials

Talin, A.A.; Jones, Reese E.; Spataru, Dan C.; Leonard, Francois L.; He, Yuping H.; Foster, Michael E.; Allendorf, Mark D.; Stavila, Vitalie S.

Metal organic frameworks (MOFs) are extended, nanoporous crystalline compounds consisting of metal ions interconnected by organic ligands. Their synthetic versatility suggest a disruptive class of opto - electronic materials with a high degree of electrical tunability and without the property - degrading disorder of organic conductors. In this project we determined the factors controlling charge and energy transport in MOFs and evaluated their potential for thermoelectric energy conversion. Two strategies for a chieving electronic conductivity in MOFs were explored: 1) using redox active 'guest' molecules introduced into the pores to dope the framework via charge - transfer coupling (Guest@MOF), 2) metal organic graphene analogs (MOGs) with dispersive band structur es arising from strong electronic overlap between the MOG metal ions and its coordinating linker groups. Inkjet deposition methods were developed to facilitate integration of the guest@MOF and MOG materials into practical devices.

More Details

HyMARC (Sandia) Annual Report

Allendorf, Mark D.; Stavila, Vitalie S.; Klebanoff, Leonard E.; Kolasinski, Robert K.; El Gabaly Marquez, Farid E.; Zhou, Xiaowang Z.; White, James L.

The Sandia HyMARC team continued its development of new synthetic, modeling, and diagnostic tools that are providing new insights into all major classes of storage materials, ranging from relatively simple systems such as PdHx and MgH2, to exceptionally complex ones, such as the metal borohydrides, as well as materials thought to be very well-understood, such as Ti-doped NaAlH4. This unprecedented suite of capabilities, capable of probing all relevant length scales within storage materials, is already having a significant impact, as they are now being used by both Seedling projects and collaborators at other laboratories within HyMARC. We expect this impact to grow as new Seedling projects begin and through collaborations with other scientists outside HyMARC. In the coming year, Sandia efforts will focus on the highest impact problems, in coordination with the other HyMARC National Laboratory partners, to provide the foundational science necessary to accelerate the discovery of new hydrogen storage materials.

More Details

MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework

Journal of Physical Chemistry C

Spoerke, Erik D.; Small, Leo J.; Foster, Michael E.; Wheeler, Jill S.; Ullman, Andrew M.; Stavila, Vitalie S.; Rodriguez, Mark A.; Allendorf, Mark D.

Metal-organic frameworks (MOFs) are highly ordered, functionally tunable supramolecular materials with the potential to improve dye-sensitized solar cells (DSSCs). Several recent reports have indicated that photocurrent can be generated in Grätzel-type DSSC devices when MOFs are used as the sensitizer. However, the specific role(s) of the incorporated MOFs and the potential influence of residual MOF precursor species on device performance are unclear. Herein, we describe the assembly and characterization of a simplified DSSC platform in which isolated MOF crystals are used as the sensitizer in a planar device architecture. We selected a pillared porphyrin framework (PPF) as the MOF sensitizer, taking particular care to avoid contamination from light-absorbing MOF precursors. Photovoltaic and electrochemical characterization under simulated 1-sun and wavelength-selective illumination revealed photocurrent generation that is clearly ascribable to the PPF MOF. Continued refinement of highly versatile MOF structure and chemistry holds promise for dramatic improvements in emerging photovoltaic technologies. (Figure Presented).

More Details

Understanding and Mitigating the Effects of Stable Dodecahydro-closo-dodecaborate Intermediates on Hydrogen-Storage Reactions

Journal of Physical Chemistry C

White, James L.; Newhouse, Rebecca J.; Zhang, Jin Z.; Udovic, Terrence J.; Stavila, Vitalie S.

Alkali metal borohydrides can reversibly store hydrogen; however, the materials display poor cyclability, oftentimes linked to the occurrence of stable closo-polyborate intermediate species. In an effort to understand the role of such intermediates on the hydrogen storage properties of metal borohydrides, several alkali metal dodecahydro-closo-dodecaborate salts were isolated in anhydrous form and characterized by diffraction and spectroscopic techniques. Mixtures of Li2B12H12, Na2B12H12, and K2B12H12 with the corresponding alkali metal hydrides were subjected to hydrogenation conditions known to favor partial or full reversibility in metal borohydrides. The stoichiometric mixtures of MH and M2B12H12 salts form the corresponding metal borohydrides MBH4 (M = Li, Na, K) in almost quantitative yield at 100 MPa H2 and 500°C. In addition, stoichiometric mixtures of Li2B12H12 and MgH2 were found to form MgB2 at 500°C and above upon desorption in vacuum. The two destabilization strategies outlined above suggest that metal polyhydro-closo-polyborate species can be converted into the corresponding metal borohydrides or borides, albeit under rather harsh conditions of hydrogen pressure and temperature. (Chemical Equation Presented).

More Details

Transforming MOFs for Energy Applications Using the Guest@MOF Concept

Inorganic Chemistry

Ullman, Andrew M.; Brown, Jonathan W.; Foster, Michael E.; Leonard, Francois L.; Leong, Kirsty; Stavila, Vitalie S.; Allendorf, Mark D.

As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal-organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application. Of particular importance is the ability to tune the strength of the interaction between the MOF pores and guest molecules. By cleverly controlling these MOF-guest interactions, the chemist may impart new function into the Guest@MOF materials otherwise lacking in vacant MOF. Herein, we highlight the concept of the Guest@MOF as it relates to our efforts to develop these materials for energy-related applicatons. Our work in the areas of H2 and noble gas storage, hydrogenolysis of biomass, light-harvesting, and conductive materials will be discussed. Of relevance to light-harvesting applications, we report for the first time a postsynthetic modification strategy for increasing the loading of a light-sensitive electron-donor molecule in the pores of a functionalized MIL-101 structure. Through the demonstrated versatility of these approaches, we show that, by treating guest molecules as integral design elements for new MOF constructs, MOF science can have a significant impact on the advancement of clean energy technologies.

More Details

Molecular Dynamics Simulations of Hydrogen Diffusion in Aluminum

Journal of Physical Chemistry C

Zhou, X.W.; El Gabaly, F.; Stavila, Vitalie S.; Allendorf, Mark D.

Hydrogen diffusion impacts the performance of solid-state hydrogen storage materials and contributes to the embrittlement of structural materials under hydrogen-containing environments. In atomistic simulations, the diffusion energy barriers are usually calculated using molecular statics simulations where a nudged elastic band method is used to constrain a path connecting the two end points of an atomic jump. This approach requires prior knowledge of the "end points". For alloy and defective systems, the number of possible atomic jumps with respect to local atomic configurations is tremendous. Even when these jumps can be exhaustively studied, it is still unclear how they can be combined to give an overall diffusion behavior seen in experiments. Here we describe the use of molecular dynamics simulations to determine the overall diffusion energy barrier from the Arrhenius equation. This method does not require information about atomic jumps, and it has additional advantages, such as the ability to incorporate finite temperature effects and to determine the pre-exponential factor. As a test case for a generic method, we focus on hydrogen diffusion in bulk aluminum. We find that the challenge of this method is the statistical variation of the results. However, highly converged energy barriers can be achieved by an appropriate set of temperatures, output time intervals (for tracking hydrogen positions), and a long total simulation time. Our results help elucidate the inconsistencies of the experimental diffusion data published in the literature. The robust approach developed here may also open up future molecular dynamics simulations to rapidly study diffusion properties of complex material systems in multidimensional spaces involving composition and defects.

More Details

Liquid-Like Ionic Conduction in Solid Lithium and Sodium Monocarba-closo-Decaborates Near or at Room Temperature

Advanced Energy Materials

Tang, Wan S.; Matsuo, Motoaki; Wu, Hui; Stavila, Vitalie S.; Zhou, Wei; Talin, Albert A.; Soloninin, Alexei V.; Skoryunov, Roman V.; Babanova, Olga A.; Skripov, Alexander V.; Unemoto, Atsushi; Orimo, Shin I.; Udovic, Terrence J.

The search for solid electrolytes with sufficiently high ionic conductivities and stabilities is underway to enable the commercial viability of all-solid-state rechargeable batteries. LiCB9H10 and NaCB9H10 compounds exhibit the most impressive superionic conductivities yet among complex-hydride-based materials, including this class of large-polyhedral-anion-based salts. The pseudoaromatic nature of the CB9H10 anions makes them relatively stable like their B12H122-, B10H102-, and CB11H122- cousins, rendering their salts prime candidates for incorporation into next-generation, all-solid-state devices. Preliminary cyclic voltammetry measurements indicate that only cathodic and anodic currents are observed near 0 v corresponding to Li/Na deposition on the Au electrode and Li/Na stripping, respectively, without signifi cant anodic currents, at least ≤ 5 v for both LiCB9H10 (363 K) and NaCB9H10 (303 K). The similar conductivity behaviors with temperature for LiCB9H10 and NaCB9H10 compared to those for LiCB11H12 and NaCB11H12 , and their order-of-magnitude enhancements over disordered NaCB9H10, irrespective of structural symmetries, further reinforces the notion that anion monovalency better facilitates high cation translational mobility in these large- polyhedral-anion-based systems.

More Details

MOF-Based Catalysts for Selective Hydrogenolysis of Carbon-Oxygen Ether Bonds

ACS Catalysis

Stavila, Vitalie S.; Ramakrishnan, Parthasarathi R.; Davis, Ryan W.; El Gabaly, Farid; Sale, Kenneth L.; Simmons, Blake S.; Singh, Seema S.; Allendorf, Mark D.

We demonstrate that metal-organic frameworks (MOFs) can catalyze hydrogenolysis of aryl ether bonds under mild conditions. Mg-IRMOF-74(I) and Mg-IRMOF-74(II) are stable under reducing conditions and can cleave phenyl ethers containing β-O-4, α-O-4, and 4-O-5 linkages to the corresponding hydrocarbons and phenols. Reaction occurs at 10 bar H2 and 120 °C without added base. DFT-optimized structures and charge transfer analysis suggest that the MOF orients the substrate near Mg2+ ions on the pore walls. Ti and Ni doping further increase conversions to as high as 82% with 96% selectivity for hydrogenolysis versus ring hydrogenation. Repeated cycling induces no loss of activity, making this a promising route for mild aryl-ether bond scission.

More Details

Structure-dependent vibrational dynamics of Mg(BH4)2 polymorphs probed with neutron vibrational spectroscopy and first-principles calculations

Physical Chemistry Chemical Physics

Dimitrievska, Mirjana; White, James L.; Zhou, Wei; Stavila, Vitalie S.; Klebanoff, Leonard E.; Udovic, Terrence J.

The structure-dependent vibrational properties of different Mg(BH4)2 polymorphs (α, β, γ, and δ phases) were investigated with a combination of neutron vibrational spectroscopy (NVS) measurements and density functional theory (DFT) calculations, with emphasis placed on the effects of the local structure and orientation of the BH4- anions. DFT simulations closely match the neutron vibrational spectra. The main bands in the low-energy region (20-80 meV) are associated with the BH4- librational modes. The features in the intermediate energy region (80-120 meV) are attributed to overtones and combination bands arising from the lower-energy modes. The features in the high-energy region (120-200 meV) correspond to the BH4- symmetric and asymmetric bending vibrations, of which four peaks located at 140, 142, 160, and 172 meV are especially intense. There are noticeable intensity distribution variations in the vibrational bands for different polymorphs. This is explained by the differences in the spatial distribution of BH4- anions within various structures. An example of the possible identification of products after the hydrogenation of MgB2, using NVS measurements, is presented. These results provide fundamental insights of benefit to researchers currently studying these promising hydrogen-storage materials.

More Details

Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions

Energy and Environmental Science

Tang, Wan S.; Unemoto, Atsushi; Zhou, Wei; Stavila, Vitalie S.; Matsuo, Motoaki; Wu, Hui; Orimo, Shin I.; Udovic, Terrence J.

Solid electrolytes with sufficiently high conductivities and stabilities are the elusive answer to the inherent shortcomings of organic liquid electrolytes prevalent in today's rechargeable batteries. We recently revealed a novel fast-ion-conducting sodium salt, Na2B12H12, which contains large, icosahedral, divalent B12H122- anions that enable impressive superionic conductivity, albeit only above its 529 K phase transition. Its lithium congener, Li2B12H12, possesses an even more technologically prohibitive transition temperature above 600 K. Here we show that the chemically related LiCB11H12 and NaCB11H12 salts, which contain icosahedral, monovalent CB11H12- anions, both exhibit much lower transition temperatures near 400 K and 380 K, respectively, and truly stellar ionic conductivities (>0.1 S cm-1) unmatched by any other known polycrystalline materials at these temperatures. With proper modifications, we are confident that room-temperature-stabilized superionic salts incorporating such large polyhedral anion building blocks are attainable, thus enhancing their future prospects as practical electrolyte materials in next-generation, all-solid-state batteries.

More Details

Synthesis of water-soluble mono- and ditopic imidazoliums for carbene ligands

Sandia journal manuscript; Not yet accepted for publication

Anstey, Mitchell A.; Cordaro, Joseph G.; Feng, Patrick L.; Murtagh, Dustin M.; Mengesha, Wondwosen M.; Stavila, Vitalie S.

Synthesis of ditopic imidazoliums was achieved using a modular step-wise procedure. The procedure itself is amenable to a wide array of functional groups that can be incorporated into the imidazolium architecture. The resulting compounds range from ditopic zwitterions to highly-soluble dicationic aromatics

More Details

Guest-induced emergent properties in metal-organic frameworks

Journal of Physical Chemistry Letters

Allendorf, Mark D.; Foster, Michael E.; Leonard, Francois L.; Stavila, Vitalie S.; Feng, Patrick L.; Doty, F.P.; Leong, Kirsty; Ma, Eric Y.; Johnston, Scott R.; Talin, A.A.

Metal-organic frameworks (MOFs) are crystalline nanoporous materials comprised of organic electron donors linked to metal ions by strong coordination bonds. Applications such as gas storage and separations are currently receiving considerable attention, but if the unique properties of MOFs could be extended to electronics, magnetics, and photonics, the impact on material science would greatly increase. Recently, we obtained "emergent properties," such as electronic conductivity and energy transfer, by infiltrating MOF pores with "guest" molecules that interact with the framework electronic structure. In this Perspective, we define a path to emergent properties based on the Guest@MOF concept, using zinc-carboxylate and copper-paddlewheel MOFs for illustration. Energy transfer and light harvesting are discussed for zinc carboxylate frameworks infiltrated with triplet-scavenging organometallic compounds and thiophene- and fullerene-infiltrated MOF-177. In addition, we discuss the mechanism of charge transport in TCNQ-infiltrated HKUST-1, the first MOF with electrical conductivity approaching conducting organic polymers. These examples show that guest molecules in MOF pores should be considered not merely as impurities or analytes to be sensed but also as an important aspect of rational design.

More Details

Crystal engineering, structure-function relationships, and the future of metal-organic frameworks

CrystEngComm

Allendorf, Mark D.; Stavila, Vitalie S.

Metal-Organic Frameworks (MOFs) are a rapidly expanding class of hybrid organic-inorganic materials that can be rationally designed and assembled through crystal engineering. The explosion of interest in this subclass of coordination polymers results from their outstanding properties and myriad possible applications, which include traditional uses of microporous materials, such as gas storage, separations, and catalysis, as well as new realms in biomedicine, electronic devices, and information storage. The objective of this Highlight article is to provide the reader with a sense of where the field stands after roughly fifteen years of research. Remarkable progress has been made, but the barriers to practical and commercial advances are also evident. We discuss the basic elements of MOF assembly and present a conceptual hierarchy of structural elements that assists in understanding how unique properties in these materials can be achieved. Structure-function relationships are then discussed; several are now well understood, as a result of the focused efforts of many research groups over the past decade. Prospects for the use of MOFs in membranes, catalysis, biomedicine, and as active components in electronic and photonic devices are also discussed. Finally, we identify the most pressing challenges in our view that must be addressed for these materials to realize their full potential in the marketplace. This journal is

More Details

Hydrogen sorption characteristics of nanostructured Pd-10Rh processed by cryomilling

Acta Materialia

Yang, Nancy Y.; Yee, Joshua K.; Zhang, Zhihui; Kurmanaeva, Lilia; Cappillino, Patrick C.; Stavila, Vitalie S.; Lavernia, Enrique J.; San Marchi, Christopher W.

Palladium and its alloys are model systems for studying the solid-state storage of hydrogen. Mechanical milling is commonly used to process complex powder systems for solid-state hydrogen storage; however, milling can also be used to evolve nanostructured powder to modify hydrogen sorption characteristics. In the present study, cryomilling (mechanical attrition milling in a cryogenic liquid) is used to produce nanostructured palladium-rhodium alloy powder. Characterization of the cryomilled Pd-10Rh using electron microscopy, X-ray diffraction and surface area analysis reveal that (i) particle morphology evolves from spherical to flattened disk-like particles; while (ii) crystallite size decreases from several microns to less than 100 nm; and (iii) dislocation density increases with increased cryomilling time. Hydrogen absorption and desorption isotherms as well as the time scales for absorption were measured for cryomilled Pd-10Rh, and correlated with observed microstructural changes induced by the cryomilling process. In short, as the microstructure of the Pd-10Rh alloy is refined by cryomilling: (i) the maximum hydrogen concentration in the α-phase increases, (ii) the pressure plateau becomes flatter and (iii) the equilibrium hydrogen capacity increases at pressure of 101.3 kPa. Additionally, the rate of hydrogen absorption was reduced by an order of magnitude compared to non-cryomilled (atomized) powder.

More Details

Ion beam modification of topological insulator bismuth selenide

Applied Physics Letters

Sharma, P.A.; Lima Sharma, A.L.; Hekmaty, Michelle A.; Hattar, K.; Stavila, Vitalie S.; Goeke, R.; Erickson, K.; Medlin, Douglas L.; Brahlek, M.; Koirala, N.; Oh, S.

We demonstrate chemical doping of a topological insulator Bi2Se3 using ion implantation. Ion beam-induced structural damage was characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Ion damage was reversed using a simple thermal annealing step. Carrier-type conversion was achieved using ion implantation followed by an activation anneal in Bi2Se3 thin films. These two sets of experiments establish the feasibility of ion implantation for chemical modification of Bi2Se3, a prototypical topological insulator. Ion implantation can, in principle, be used for any topological insulator. The direct implantation of dopants should allow better control over carrier concentrations for the purposes of achieving low bulk conductivity. Ion implantation also enables the fabrication of inhomogeneously doped structures, which in turn should make possible new types of device designs.

More Details

Exploring Charge Transport in Guest Molecule Infiltrated Cu3(BTC)2 Metal Organic Framework

Leonard, Francois L.; Stavila, Vitalie S.; Allendorf, Mark D.

The goal of this Exploratory Express project was to expand the understanding of the physical properties of our recently discovered class of materials consisting of metal-organic frameworks with electroactive ‘guest’ molecules that together form an electrically conducting charge-transfer complex (molecule@MOF). Thin films of Cu3(BTC)2 were grown on fused silica using solution step-by-step growth and were infiltrated with the molecule tetracyanoquinodimethane (TCNQ). The infiltrated MOF films were extensively characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy, electrical conductivity, and thermoelectric properties. Thermopower measurements on TCNQ@Cu3(BTC)2 revealed a positive Seebeck coefficient of ~400 μV/k, indicating that holes are the primary carriers in this material. The high value of the Seebeck coefficient and the expected low thermal conductivity suggest that molecule@MOF materials may be attractive for thermoelectric power conversion applications requiring low cost, solution-processable, and non-toxic active materials.

More Details

Bio-inspired MOF-based Catalysts for Lignin Valorization

Allendorf, Mark D.; Stavila, Vitalie S.; Ramakrishnan, Parthasarathi R.; Davis, Ryan W.

Lignin is a potentially plentiful source of renewable organics, with %7E50Mtons/yr produced by the pulp/paper industry and 200-300 Mtons/yr projected production by a US biofuels industry. This industry must process approximately 1 billion tons of biomass to meet the US Renewable Fuel goals. However, there are currently no efficient processes for converting lignin to value-added chemicals and drop-in fuels. Lignin is therefore an opportunity for production of valuable renewable chemicals, but presents staggering technical and economic challenges due to the quantities of material involved and the strong chemical bonds comprising this polymer. Aggressive chemistries and high temperatures are required to degrade lignin without catalysts. Moreover, chemical non-uniformity among lignins leads to complex product mixtures that tend to repolymerize. Conventional petrochemical approaches (pyrolysis, catalytic cracking, gasification) are energy intensive (400-800 degC), require complicated separations, and remove valuable chemical functionality. Low-temperature (25-200 degC) alternatives are clearly desirable, but enzymes are thermally fragile and incompatible with liquid organic compounds, making them impractical for large-scale biorefining. Alternatively, homogeneous catalysts, such as recently developed vanadium complexes, must be separated from product mixtures, while many heterogenous catalysts involve costly noble metals. The objective of this project is to demonstrate proof of concept that an entirely new class of biomimetic, efficient, and industrially robust synthetic catalysts based on nanoporous Metal- Organic Frameworks (MOFs) can be developed. Although catalytic MOFs are known, catalysis of bond cleavage reactions needed for lignin degradation is completely unexplored. Thus, fundamental research is required that industry and most sponsoring agencies are currently unwilling to undertake. We introduce MOFs infiltrated with titanium and nickel species as catalysts for the C-O bond hydrogenolysis in model compounds, which mimic the b-O-4, a-O-4, and 4-O-5 linkages of natural lignin. The versatile IRMOF-74(n) series is proposed as a platform for creating efficient hydrogenolysis catalysts as it not only displays tunable pore sizes, but also has the required thermal and chemical stability. The catalytic C-O bond cleavage occurs at 10 bar hydrogen pressure and temperatures as low as 120 degC. The conversion efficiency of the aromatic ether substrates into the corresponding hydrocarbons and phenols varies as PhCH 2 CH 2 OPh > PhCH 2 OPh > PhOPh (Ph = phenyl), while the catalytic activity generally follows the following trend Ni@IRMOF-74>Ti@IRMOF-74>IRMOF-74. Conversions as high as 80%, coupled with good selectivity for hydrogenolysis vs. hydrogenation, highlight the potential of MOF-based catalysts for the selective cleavage of recalcitrant aryl-ether bonds found in lignin and other biopolymers. This project supports the DOE Integrated Biorefinery Program goals, the objective of which is to convert biomass to fuels and high-value chemicals, by addressing an important technology gap: the lack of low-temperature catalysts suitable for industrial lignin degradation. Biomass, which is %7E30 wt% lignin, constitutes a potentially major source of platform chemicals that could improve overall profitability and productivity of all energy-related products, thereby benefiting consumers and reducing national dependence on imported oil. Additionally, DoD has a strong interest in low-cost drop-in fuels (Navy Biofuel Initiative) and has signed a Memorandum of Understanding with DOE and USDA to develop a sustainable biofuels industry.

More Details

Crystalline Nanoporous Frameworks: a Nanolaboratory for Probing Excitonic Device Concepts

Allendorf, Mark D.; Azoulay, Jason A.; Ford, Alexandra C.; Foster, Michael E.; El Gabaly Marquez, Farid E.; Leonard, Francois L.; Leong, Kirsty; Stavila, Vitalie S.; Talin, A.A.; Wong, Brian M.; Brumbach, Michael T.; Van Gough, D.V.; Lambert, Timothy N.; Rodriguez, Mark A.; Spoerke, Erik D.; Wheeler, David R.; Deaton, Joseph C.; Centrone, Andrea C.; Haney, Paul H.; Kinney, R.K.; Szalai, Veronika S.; Yoon, Heayoung P.

Electro-optical organic materials hold great promise for the development of high-efficiency devices based on exciton formation and dissociation, such as organic photovoltaics (OPV) and organic light-emitting devices (OLEDs). However, the external quantum efficiency (EQE) of both OPV and OLEDs must be improved to make these technologies economical. Efficiency rolloff in OLEDs and inability to control morphology at key OPV interfaces both reduce EQE. Only by creating materials that allow manipulation and control of the intimate assembly and communication between various nanoscale excitonic components can we hope to first understand and then engineer the system to allow these materials to reach their potential. The aims of this proposal are to: 1) develop a paradigm-changing platform for probing excitonic processes composed of Crystalline Nanoporous Frameworks (CNFs) infiltrated with secondary materials (such as a complimentary semiconductor); 2) use them to probe fundamental aspects of excitonic processes; and 3) create prototype OPVs and OLEDs using infiltrated CNF as active device components. These functional platforms will allow detailed control of key interactions at the nanoscale, overcoming the disorder and limited synthetic control inherent in conventional organic materials. CNFs are revolutionary inorganic-organic hybrid materials boasting unmatched synthetic flexibility that allow tuning of chemical, geometric, electrical, and light absorption/generation properties. For example, bandgap engineering is feasible and polyaromatic linkers provide tunable photon antennae; rigid 1-5 nm pores provide an oriented, intimate host for triplet emitters (to improve light emission in OLEDs) or secondary semiconducting polymers (creating a charge-separation interface in OPV). These atomically engineered, ordered structures will enable critical fundamental questions to be answered concerning charge transport, nanoscale interfaces, and exciton behavior that are inaccessible in disordered systems. Implementing this concept also creates entirely new dimensions for device fabrication that could both improve performance, increase durability, and reduce costs with unprecedented control of over properties. This report summarizes the key results of this project and is divided into sections based on publications that resulted from the work. We begin in Section 2 with an investigation of light harvesting and energy transfer in a MOF infiltrated with donor and acceptor molecules of the type typically used in OPV devices (thiophenes and fullerenes, respectively). The results show that MOFs can provide multiple functions: as a light harvester, as a stabilizer and organizer or the infiltrated molecules, and as a facilitator of energy transfer. Section 3 describes computational design of MOF linker groups to accomplish light harvesting in the visible and facilitate charge separation and transport. The predictions were validated by UV-visible absorption spectroscopy, demonstrating that rational design of MOFs for light-harvesting purposes is feasible. Section 4 extends the infiltration concept discussed in Section to, which we now designate as "Molecule@MOF" to create an electrically conducting framework. The tailorability and high conductivity of this material are unprecedented, meriting publication in the journal Science and spawning several Technical Advances. Section 5 discusses processes we developed for depositing MOFs as thin films on substrates, a critical enabling technology for fabricating MOF-based electronic devices. Finally, in Section 6 we summarize results showing that a MOF thin film can be used as a sensitizer in a DSSC, demonstrating that MOFs can serve as active layers in excitonic devices. Overall, this project provides several crucial proofs-of- concept that the potential of MOFs for use in optoelectronic devices that we predicted several years ago [ 3 ] can be realized in practice.

More Details

Control of both particle and pore size in nanoporous palladium alloy powders

Powder Technology

Jones, Christopher G.; Cappillino, Patrick C.; Stavila, Vitalie S.; Robinson, David R.

Energy storage materials often involve chemical reactions with bulk solids. Porosity within the solids can enhance reaction rates. The porosity can be either within or between individual particles of the material. Greater control of the size and uniformity of both types of pore should lead to enhancements of charging and discharging rates in energy storage systems. Furthermore, to control both particle and pore size in nanoporous palladium (Pd)-based hydrogen storage materials, first we created uniformly sized copper particles of about 1 μm diameter by the reduction of copper sulfate with ascorbic acid. In turn, these were used as reducing agents for tetrachloropalladate in the presence of a block copolymer surfactant. The copper reductant particles are geometrically self-limiting, so the resulting Pd particles are of similar size. The surfactant induces formation of 10 nm-scale pores within the particles. Some residual copper is alloyed with the Pd, reducing hydrogen storage capacity; use of a more reactive Pd salt can mitigate this. The reaction is conveniently performed in gram-scale batches.

More Details

Kinetics and mechanism of metal-organic framework thin film growth: Systematic investigation of HKUST-1 deposition on QCM electrodes

Chemical Science

Stavila, Vitalie S.; Volponi, Joanne V.; Katzenmeyer, Aaron M.; Dixon, Matthew C.; Allendorf, Mark D.

We describe a systematic investigation of the factors controlling step-by-step growth of the metal-organic framework (MOF) [Cu 3(btc) 2(H 2O) 3]·xH 2O (also known as HKUST-1), using quartz crystal microbalance (QCM) electrodes as an in situ probe of the reaction kinetics and mechanism. Electrodes coated with silica, alumina and gold functionalized with OH- and COOH-terminated self-assembled monolayers (SAMs) were employed to determine the effects of surface properties on nucleation. Deposition rates were measured using the high sensitivity available from QCM-D (D = dissipation) techniques to determine rate constants in the early stage of the process. Films were characterized using grazing incidence XRD, SEM, AFM, profilometry and reflection-absorption IR spectroscopy. The effects of reaction time, concentration, temperature and substrate on the deposition rates, film crystallinity and surface morphology were evaluated. The initial growth step, in which the surface is exposed to copper ions (in the form of an ethanolic solution of copper(ii) acetate) is fast and independent of temperature, after which all subsequent steps are thermally activated over the temperature range 22-62 °C. Using these data, we propose a kinetic model for the Cu 3(btc) 2 growth on surfaces that includes rate constants for the individual steps. The magnitude of the activation energies, in particular the large entropy decrease, suggests an associative reaction with a tight transition state. The measured activation energies for the step-by-step MOF growth are an order of magnitude lower than the value previously reported for bulk Cu 3(btc) 2 crystals. Finally, the results of this investigation demonstrate that the QCM method is a powerful tool for quantitative, in situ monitoring of MOF growth in real time. © 2012 The Royal Society of Chemistry.

More Details

Stereochemistry of lead(II) complexes with oxygen donor ligands

Proposed for publication in the Coordination Chemistry Reviews.

Stavila, Vitalie S.

This review discusses the coordination number (CN) and the coordination geometry of the first coordination sphere of Pb(II) atoms in crystal structures of 98 lead(II) complexes with O-donor ligands and the stereochemically active lone pair of electrons (LP, E) in the terms of the valence shell electron-pair repulsion (VSEPR) model. The CN of Pb(II) atoms of the first coordination sphere has values falling into the range (3 + E) to (6 + E). The following coordination polyhedra-{psi}-tetrahedron (I), {psi}-trigonal bipyramid (II), {psi}-octahedron (III), {psi}-pentagonal bipyramid with an axial (IV) or equatorial (V) vacant position are formed. For the investigated structures of the Pb(II) complexes, the formula of each compound, the overall CN of the Pb(II) atom considered as the sum of the CN in the first coordination sphere and the number of secondary bonds, the polyhedron shape, the Pb-O bond lengths, and O-Pb-O bond angles in the first coordination sphere, secondary bond lengths, references and REFCODEs are presented in the comprehensive Tables. The quantum chemical investigations performed using density functional theory (DFT) method have confirmed the stereochemical activity of the LP of Pb(II) atoms in the studied structures of lead(II) complexes with O-donor ligands.

More Details
156 Results
156 Results