Incorporating Human Readiness Levels at Sandia National Laboratories
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
A human readiness levels (HRL) scale provides a framework to factor in the human dimension during technology development. This framework promotes careful consideration of the human as a part of the system throughout the product lifecycle. Insufficient attention to the human component of the system can lead to added costs, delayed deliverables, system failure, and even the loss of human life in high-consequence systems. We make the economic and technical justification for using an HRL scale by evaluating a reactive case study within a national laboratory. We create a historical technology readiness level (TRL) adoption roadmap to forecast a potential HRL adoption roadmap. We identify characteristics of organizations that are most likely to adopt the scale and conclude by recommending several project management tactics to ensure successful implementation.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
The Rim-to-Rim Wearables At The Canyon for Health (R2R WATCH) study examines metrics recordable on commercial off the shelf (COTS) devices that are most relevant and reliable for the earliest possible indication of a health or performance decline. This is accomplished through collaboration between Sandia National Laboratories (SNL) and The University of New Mexico (UNM) where the two organizations team up to collect physiological, cognitive, and biological markers from volunteer hikers who attempt the Rim-to-Rim (R2R) hike at the Grand Canyon. Three forms of data are collected as hikers travel from rim to rim: physiological data through wearable devices, cognitive data through a cognitive task taken every 3 hours, and blood samples obtained before and after completing the hike. Data is collected from both civilian and warfighter hikers. Once the data is obtained, it is analyzed to understand the effectiveness of each COTS device and the validity of the data collected. We also aim to identify which physiological and cognitive phenomena collected by wearable devices are the most relatable to overall health and task performance in extreme environments, and of these ascertain which markers provide the earliest yet reliable indication of health decline. Finally, we analyze the data for significant differences between civilians’ and warfighters’ markers and the relationship to performance. This is a study funded by the Defense Threat Reduction Agency (DTRA, Project CB10359) and the University of New Mexico (The main portion of the R2R WATCH study is funded by DTRA. UNM is currently funding all activities related to bloodwork. DTRA, Project CB10359; SAND2017-1872 C). This paper describes the experimental design and methodology for the first year of the R2R WATCH project.
Abstract not provided.
Abstract not provided.
Abstract not provided.