Publications

Results 1–50 of 126
Skip to search filters

What can simulation test beds teach us about social science? Results of the ground truth program

Computational and Mathematical Organization Theory

Naugle, Asmeret B.; Krofcheck, Daniel J.; Warrender, Christina E.; Lakkaraju, Kiran L.; Swiler, Laura P.; Verzi, Stephen J.; Emery, Ben; Murdock, Jaimie; Bernard, Michael L.; Romero, Vicente J.

The ground truth program used simulations as test beds for social science research methods. The simulations had known ground truth and were capable of producing large amounts of data. This allowed research teams to run experiments and ask questions of these simulations similar to social scientists studying real-world systems, and enabled robust evaluation of their causal inference, prediction, and prescription capabilities. We tested three hypotheses about research effectiveness using data from the ground truth program, specifically looking at the influence of complexity, causal understanding, and data collection on performance. We found some evidence that system complexity and causal understanding influenced research performance, but no evidence that data availability contributed. The ground truth program may be the first robust coupling of simulation test beds with an experimental framework capable of teasing out factors that determine the success of social science research.

More Details

Feedback density and causal complexity of simulation model structure

Journal of Simulation

Naugle, Asmeret B.; Verzi, Stephen J.; Lakkaraju, Kiran L.; Swiler, Laura P.; Warrender, Christina E.; Bernard, Michael L.; Romero, Vicente J.

Measures of simulation model complexity generally focus on outputs; we propose measuring the complexity of a model’s causal structure to gain insight into its fundamental character. This article introduces tools for measuring causal complexity. First, we introduce a method for developing a model’s causal structure diagram, which characterises the causal interactions present in the code. Causal structure diagrams facilitate comparison of simulation models, including those from different paradigms. Next, we develop metrics for evaluating a model’s causal complexity using its causal structure diagram. We discuss cyclomatic complexity as a measure of the intricacy of causal structure and introduce two new metrics that incorporate the concept of feedback, a fundamental component of causal structure. The first new metric introduced here is feedback density, a measure of the cycle-based interconnectedness of causal structure. The second metric combines cyclomatic complexity and feedback density into a comprehensive causal complexity measure. Finally, we demonstrate these complexity metrics on simulation models from multiple paradigms and discuss potential uses and interpretations. These tools enable direct comparison of models across paradigms and provide a mechanism for measuring and discussing complexity based on a model’s fundamental assumptions and design.

More Details

Graph-Based Similarity Metrics for Comparing Simulation Model Causal Structures

Naugle, Asmeret B.; Swiler, Laura P.; Lakkaraju, Kiran L.; Verzi, Stephen J.; Warrender, Christina E.; Romero, Vicente J.

The causal structure of a simulation is a major determinant of both its character and behavior, yet most methods we use to compare simulations focus only on simulation outputs. We introduce a method that combines graphical representation with information theoretic metrics to quantitatively compare the causal structures of models. The method applies to agent-based simulations as well as system dynamics models and facilitates comparison within and between types. Comparing models based on their causal structures can illuminate differences in assumptions made by the models, allowing modelers to (1) better situate their models in the context of existing work, including highlighting novelty, (2) explicitly compare conceptual theory and assumptions to simulated theory and assumptions, and (3) investigate potential causal drivers of divergent behavior between models. We demonstrate the method by comparing two epidemiology models at different levels of aggregation.

More Details

The Ground Truth Program: Simulations as Test Beds for Social Science Research Methods.

Computational and Mathematical Organization Theory

Naugle, Asmeret B.; Russell, Adam R.; Lakkaraju, Kiran L.; Swiler, Laura P.; Verzi, Stephen J.; Romero, Vicente J.

Social systems are uniquely complex and difficult to study, but understanding them is vital to solving the world’s problems. The Ground Truth program developed a new way of testing the research methods that attempt to understand and leverage the Human Domain and its associated complexities. The program developed simulations of social systems as virtual world test beds. Not only were these simulations able to produce data on future states of the system under various circumstances and scenarios, but their causal ground truth was also explicitly known. Research teams studied these virtual worlds, facilitating deep validation of causal inference, prediction, and prescription methods. The Ground Truth program model provides a way to test and validate research methods to an extent previously impossible, and to study the intricacies and interactions of different components of research.

More Details

Arguments for the Generality and Effectiveness of “Discrete Direct” Model Calibration and Uncertainty Propagation vs. Other Calibration-UQ Approaches

AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Romero, Vicente J.

This paper describes and analyzes the Discrete Direct (DD) model calibration and uncertainty propagation approach for computational models calibrated to data from sparse replicate tests of stochastically varying phenomena. The DD approach consists of generating and propagating discrete realizations of possible calibration parameter values corresponding to possible realizations of the uncertain inputs and outputs of the experiments. This is in contrast to model calibration methods that attempt to assign or infer continuous probability density functions for the calibration parameters. The DD approach straightforwardly accommodates aleatory variabilities and epistemic uncertainties (interval and/or probabilistically represented) in system properties and behaviors, in input initial and boundary conditions, and in measurement uncertainties of experimental inputs and outputs. In particular, the approach has several advantages over Bayesian and other calibration techniques in capturing and utilizing the information obtained from the typically small number of replicate experiments in model calibration situations, especially when sparse realizations of random function data like force-displacement curves from replicate material tests are used for calibration. The DD approach better preserves the fundamental information from the experimental data in a way that enables model predictions to be more directly tied to the supporting experimental data. The DD methodology is also simpler and typically less expensive than other established calibration-UQ approaches, is straightforward to implement, and is plausibly more reliably conservative and accurate for sparse-data calibration-UQ problems. The methodology is explained and analyzed in this paper under several regimes of model calibration and uncertainty propagation circumstances.

More Details

Discrete-Direct Model Calibration and Uncertainty Propagation Method Confirmed on Multi-Parameter Plasticity Model Calibrated to Sparse Random Field Data

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

Romero, Vicente J.; Winokur, Justin W.; Orient, George E.; Dempsey, James F.

A discrete direct (DD) model calibration and uncertainty propagation approach is explained and demonstrated on a 4-parameter Johnson-Cook (J-C) strain-rate dependent material strength model for an aluminum alloy. The methodology’s performance is characterized in many trials involving four random realizations of strain-rate dependent material-test data curves per trial, drawn from a large synthetic population. The J-C model is calibrated to particular combinations of the data curves to obtain calibration parameter sets which are then propagated to “Can Crush” structural model predictions to produce samples of predicted response variability. These are processed with appropriate sparse-sample uncertainty quantification (UQ) methods to estimate various statistics of response with an appropriate level of conservatism. This is tested on 16 output quantities (von Mises stresses and equivalent plastic strains) and it is shown that important statistics of the true variabilities of the 16 quantities are bounded with a high success rate that is reasonably predictable and controllable. The DD approach has several advantages over other calibration-UQ approaches like Bayesian inference for capturing and utilizing the information obtained from typically small numbers of replicate experiments in model calibration situations—especially when sparse replicate functional data are involved like force–displacement curves from material tests. The DD methodology is straightforward and efficient for calibration and propagation problems involving aleatory and epistemic uncertainties in calibration experiments, models, and procedures.

More Details

Adaptive polynomial response surfaces and level-1 probability boxes for propagating and representing aleatory and epistemic components of uncertainty1

AIAA Scitech 2021 Forum

Romero, Vicente J.; Black, Amalia

When analyzing and predicting stochastic variability in a population of devices or systems, it is important to segregate epistemic lack-of-knowledge uncertainties and aleatory uncertainties due to stochastic variation in the population. This traditionally requires dual-loop Monte Carlo (MC) uncertainty propagation where the outer loop samples the epistemic uncertainties and for each realization, an inner loop samples and propagates the aleatory uncertainties. This results in various realizations of what the aleatory distribution of population response variability might be. Under certain conditions, the various possible realizations can be represented in a concise manner by approximate upper and lower bounding distributions of the same shape, composing a “Level 1” approximate probability box (L1 APbox). These are usually sufficient for model validation purposes, for example, and can be formed with substantially reduced computational cost and complication in propagating the aleatory and epistemic uncertainties (compared to dual-loop MC). Propagation cost can be further reduced by constructing and sampling response surface models that approximate the variation of physics-model output responses over the uncertainty parameter space. A simple dimension-and order-adaptive polynomial response surface approach is demonstrated for propagating the aleatory and epistemic uncertainties in a L1 APbox and for estimating the error contributed by using the surrogate model. Sensitivity analysis is also performed to quantify which uncertainty sources contribute most to the total aleatory-epistemic uncertainty in predicted response. The methodology is demonstrated as part of a model validation assessment involving thermal-chemical-mechanical response and weld breach failure of sealed canisters weakened by high temperatures and pressurized by heat-induced pyrolysis of foam.

More Details

Propagating and combining aleatory uncertainties characterized by continuous random variables and sparse discrete realizations from random functions

AIAA Scitech 2020 Forum

Romero, Vicente J.

This paper presents a practical methodology for propagating and combining the effects of random variations of several continuous scalar quantities and several random-function quantities affecting the failure pressure of a heated pressurized vessel. The random functions are associated with stress-strain curve test-to-test variability in replicate material strength tests (uniaxial tension tests) on nominally identical material specimens. It is demonstrated how to effectively propagate the curve-to-curve discrete variations and appropriately account for the small sample size of functional data realizations. This is coordinated with the propagation of aleatory variability described by uncertainty distributions for continuous scalar quantities of pressure-vessel wall thickness, weld depth, and thermal-contact factor. Motivated by the high expense of the pressure vessel simulations of heating, pressurization, and failure, a simple dimension-and order-adaptive polynomial response surface approach is used to propagate effects of the random variables and enable uncertainty estimates on the error contributed by using the surrogate model. Linear convolution is used to aggregate the resultant aleatory uncertainty from the parametrically propagated random variables with an appropriately conservative probability distribution of aleatory effects from propagating the multiple stress-strain curves for each material. The response surface constructions, Monte Carlo sampling of them for uncertainty propagation, and linear sensitivity analysis and convolution procedures, are demonstrated with standard EXCEL spreadsheet functions (no special software needed).

More Details

Approaches for quantifying uncertainties in computational modeling for aerospace applications

AIAA Scitech 2020 Forum

Schaefer, John; Leyde, Brian; Denham, Casey; Romero, Vicente J.; Schafer, Steven

In the past few decades, advancements in computing hardware and physical modeling capability have allowed computer models such as computational fluid dynamics to accelerate the development cycle of aerospace products. In general, model behavior is well-understood in the heart of the flight envelope, such as the cruise condition for a conventional commercial aircraft. Models have been well validated at these conditions, so the practice of running a single, deterministic solution to assess aircraft performance is sufficient for engineering purposes. However, the aerospace industry is beginning to apply models to configurations at the edge of the flight envelope. In this regime, uncertainty in the model due to its mathematical form, numerical behavior, or model parameters may become important. Uncertainty Quantification is the process of characterizing all major sources of uncertainty in the model and quantifying their effect on analysis outcomes. The goal of this paper is to survey modern uncertainty quantification methodologies and relate them to aerospace applications. Ultimately, uncertainty quantification enables modelers and simulation practitioners to make more informed statements about the uncertainty and associated degree of credibility of model-based predictions.

More Details

Bootstrapping and jackknife resampling to improve sparse-sample uq methods for tail probability estimation

ASME 2019 Verification and Validation Symposium, VVS 2019

Jekel, Charles F.; Romero, Vicente J.

Tolerance Interval Equivalent Normal (TI-EN) and Superdistribution (SD) sparse-sample uncertainty quantification (UQ) methods are used for conservative estimation of small tail probabilities. These methods are used to estimate the probability of a response laying beyond a specified threshold with limited data. The study focused on sparse-sample regimes ranging from N = 2 to 20 samples, because this is reflective of most experimental and some expensive computational situations. A tail probability magnitude of 10−4 was examined on four different distribution shapes, in order to be relevant for quantification of margins and uncertainty (QMU) problems that arise in risk and reliability analyses. In most cases the UQ methods were found to have optimal performance with a small number of samples, beyond which the performance deteriorated as samples were added. Using this observation, a generalized Jackknife resampling technique was developed to average many smaller subsamples. This improved the performance of the SD and TI-EN methods, specifically when a larger than optimal number of samples were available. A Complete Jackknifing technique, which considered all possible sub-sample combinations, was shown to perform better in most cases than an alternative Bootstrap resampling technique.

More Details

Simple effective conservative treatment of uncertainty from sparse samples of random functions

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems. Part B. Mechanical Engineering

Romero, Vicente J.; Schroeder, Benjamin B.; Dempsey, James F.; Lewis, John R.; Breivik, Nicole L.; Orient, George E.; Antoun, Bonnie R.; Winokur, Justin W.; Glickman, Matthew R.; Red-Horse, John R.

This paper examines the variability of predicted responses when multiple stress-strain curves (reflecting variability from replicate material tests) are propagated through a finite element model of a ductile steel can being slowly crushed. Over 140 response quantities of interest (including displacements, stresses, strains, and calculated measures of material damage) are tracked in the simulations. Each response quantity’s behavior varies according to the particular stress-strain curves used for the materials in the model. We desire to estimate response variability when only a few stress-strain curve samples are available from material testing. Propagation of just a few samples will usually result in significantly underestimated response uncertainty relative to propagation of a much larger population that adequately samples the presiding random-function source. A simple classical statistical method, Tolerance Intervals, is tested for effectively treating sparse stress-strain curve data. The method is found to perform well on the highly nonlinear input-to-output response mappings and non-standard response distributions in the can-crush problem. The results and discussion in this paper support a proposition that the method will apply similarly well for other sparsely sampled random variable or function data, whether from experiments or models. Finally, the simple Tolerance Interval method is also demonstrated to be very economical.

More Details

Discrete-Direct Model Calibration and Propagation Approach Addressing Sparse Replicate Tests and Material, Geometric, and Measurement Uncertainties

SAE Technical Papers

Romero, Vicente J.

This paper introduces the "Discrete Direct" (DD) model calibration and uncertainty propagation approach for computational models calibrated to data from sparse replicate tests of stochastically varying systems. The DD approach generates and propagates various discrete realizations of possible calibration parameter values corresponding to possible realizations of the uncertain inputs and outputs of the experiments. This is in contrast to model calibration methods that attempt to assign or infer continuous probability density functions for the calibration parameters-which adds unjustified information to the calibration and propagation problem. The DD approach straightforwardly accommodates aleatory variabilities and epistemic uncertainties in system properties and behaviors, in input initial and boundary conditions, and in measurement uncertainties in the experiments. The approach appears to have several advantages over Bayesian and other calibration approaches for capturing and utilizing the information obtained from the typically small number of experiments in model calibration situations. In particular, the DD methodology better preserves the fundamental information from the experimental data in a way that enables model predictions to be more directly traced back to the supporting experimental data. The approach is also presently more viable for calibration involving sparse realizations of random function data (e.g. stress-strain curves) and random field data. The DD methodology is conceptually simpler than Bayesian calibration approaches, and is straightforward to implement. The methodology is demonstrated and analyzed in this paper on several illustrative calibration and uncertainty propagation problems.

More Details

Evaluation of a Class of Simple and Effective Uncertainty Methods for Sparse Samples of Random Variables and Functions

Romero, Vicente J.; Bonney, Matthew S.; Schroeder, Benjamin B.; Weirs, Vincent G.

When very few samples of a random quantity are available from a source distribution of unknown shape, it is usually not possible to accurately infer the exact distribution from which the data samples come. Under-estimation of important quantities such as response variance and failure probabilities can result. For many engineering purposes, including design and risk analysis, we attempt to avoid under-estimation with a strategy to conservatively estimate (bound) these types of quantities -- without being overly conservative -- when only a few samples of a random quantity are available from model predictions or replicate experiments. This report examines a class of related sparse-data uncertainty representation and inference approaches that are relatively simple, inexpensive, and effective. Tradeoffs between the methods' conservatism, reliability, and risk versus number of data samples (cost) are quantified with multi-attribute metrics use d to assess method performance for conservative estimation of two representative quantities: central 95% of response; and 10-4 probability of exceeding a response threshold in a tail of the distribution. Each method's performance is characterized with 10,000 random trials on a large number of diverse and challenging distributions. The best method and number of samples to use in a given circumstance depends on the uncertainty quantity to be estimated, the PDF character, and the desired reliability of bounding the true value. On the basis of this large data base and study, a strategy is proposed for selecting the method and number of samples for attaining reasonable credibility levels in bounding these types of quantities when sparse samples of random variables or functions are available from experiments or simulations.

More Details

Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

Jamison, Ryan D.; Buchheit, Thomas E.; Emery, John M.; Romero, Vicente J.; Stavig, Mark E.; Newton, Clay S.; Brown, Arthur B.

Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.

More Details

Applicability Analysis of Validation Evidence for Biomedical Computational Models

Journal of Verification, Validation and Uncertainty Quantification

Pathmanathan, Pras P.; Gray, Richard A.; Romero, Vicente J.; Morrison, Tina M.

Computational modeling has the potential to revolutionize medicine the way it transformed engineering. However, despite decades of work, there has only been limited progress to successfully translate modeling research to patient care. One major difficulty which often occurs with biomedical computational models is an inability to perform validation in a setting that closely resembles how the model will be used. For example, for a biomedical model that makes in vivo clinically relevant predictions, direct validation of predictions may be impossible for ethical, technological, or financial reasons. Unavoidable limitations inherent to the validation process lead to challenges in evaluating the credibility of biomedical model predictions. Therefore, when evaluating biomedical models, it is critical to rigorously assess applicability, that is, the relevance of the computational model, and its validation evidence to the proposed context of use (COU). However, there are no well-established methods for assessing applicability. In this paper, we present a novel framework for performing applicability analysis and demonstrate its use with a medical device computational model. The framework provides a systematic, step-by-step method for breaking down the broad question of applicability into a series of focused questions, which may be addressed using supporting evidence and subject matter expertise. The framework can be used for model justification, model assessment, and validation planning. While motivated by biomedical models, it is relevant to a broad range of disciplines and underlying physics. Finally, the proposed applicability framework could help overcome some of the barriers inherent to validation of, and aid clinical implementation of, biomedical models.

More Details

Analyst-to-Analyst Variability in Simulation-Based Prediction

Glickman, Matthew R.; Romero, Vicente J.

This report describes findings from the culminating experiment of the LDRD project entitled, "Analyst-to-Analyst Variability in Simulation-Based Prediction". For this experiment, volunteer participants solving a given test problem in engineering and statistics were interviewed at different points in their solution process. These interviews are used to trace differing solutions to differing solution processes, and differing processes to differences in reasoning, assumptions, and judgments. The issue that the experiment was designed to illuminate -- our paucity of understanding of the ways in which humans themselves have an impact on predictions derived from complex computational simulations -- is a challenging and open one. Although solution of the test problem by analyst participants in this experiment has taken much more time than originally anticipated, and is continuing past the end of this LDRD, this project has provided a rare opportunity to explore analyst-to-analyst variability in significant depth, from which we derive evidence-based insights to guide further explorations in this important area.

More Details

POF-Darts: Geometric adaptive sampling for probability of failure

Reliability Engineering and System Safety

Ebeida, Mohamed S.; Mitchell, Scott A.; Swiler, Laura P.; Romero, Vicente J.; Rushdi, Ahmad A.

We introduce a novel technique, POF-Darts, to estimate the Probability Of Failure based on random disk-packing in the uncertain parameter space. POF-Darts uses hyperplane sampling to explore the unexplored part of the uncertain space. We use the function evaluation at a sample point to determine whether it belongs to failure or non-failure regions, and surround it with a protection sphere region to avoid clustering. We decompose the domain into Voronoi cells around the function evaluations as seeds and choose the radius of the protection sphere depending on the local Lipschitz continuity. As sampling proceeds, regions uncovered with spheres will shrink, improving the estimation accuracy. After exhausting the function evaluation budget, we build a surrogate model using the function evaluations associated with the sample points and estimate the probability of failure by exhaustive sampling of that surrogate. In comparison to other similar methods, our algorithm has the advantages of decoupling the sampling step from the surrogate construction one, the ability to reach target POF values with fewer samples, and the capability of estimating the number and locations of disconnected failure regions, not just the POF value. We present various examples to demonstrate the efficiency of our novel approach.

More Details
Results 1–50 of 126
Results 1–50 of 126