Publications

8 Results
Skip to search filters

Validation of a viscoplastic model for foam response over a wide temperature range

Conference Proceedings of the Society for Experimental Mechanics Series

Smith, Adam; Hinnerichs, Terry D.; Lo, Chi S.; Neilsen, Michael K.; Bateman, Vesta I.; Carlson, Lawrence W.; Lu, Wei-Yang L.; Jin, Helena

Accurate material models are fundamental to predictive structural finite element models. Because potting foams are routinely used to mitigate shock and vibration of encapsulated components in electro/mechanical systems, accurate material models for foams are needed. A viscoplastic foam constitutive model has been developed to represent the large nonlinear and rate dependent crush of a polyurethane foam throughout an application space defined by temperature, strain rate and strain levels. Validation of this viscoplastic model, which is implemented in the transient dynamic Presto finite element code, is being achieved by modeling and testing a series of structural geometries of increasing complexity that have been designed to ensure sensitivity to material parameters. Both experimental and analytical uncertainties are being quantified to ensure fair assessment of model validity. Quantitative model validation metrics are being developed to provide a means of comparing analytical model predictions with experimental observations. This paper focuses on model validation of foam/component behavior over a wide temperature, strain rate, and strain level range using a Presto viscoplastic finite element model. Experiments include simple foam/component test articles crushed in a series of drop table tests. Material variations of density have been included. A double blind validation process is described that brings together test data with model predictions.

More Details

Segmented Aluminum Honeycomb Characteristics in T-Direction, Dynamic Crush Environments

Bateman, Vesta I.; Brown, Frederick A.; Nusser, Michael A.; Swanson, Lloyd H.

Thirteen segmented aluminum honeycomb samples (5 in. diameter and 1.5 in. height) have been crushed in an experimental configuration that uses a drop table impact machine. The 38.0 pcf bulk density samples are a unique segmented geometry that allows the samples to be crushed while maintaining a constant cross-sectional area. A crush weight of 175 lb was used to determine the rate sensitivity of the honeycomb's highest strength orientation, T-direction, in a dynamic environment of {approx}50 fps impact velocity. Experiments were conducted for two honeycomb manufacturers and at two temperatures, ambient and +165 F. Independent measurements of the crush force were made with a custom load cell and a force derived from acceleration measurements on the drop table using the Sum of Weighted Accelerations Technique with a Calibrated Force (SWAT-CAL). Normalized stress-strain curves for all thirteen experiments are included and have excellent repeatability. These data are strictly valid for material characteristics in the T orientation because the cross-sectional area of the honeycomb did not change during the crush. The dynamic crush data have a consistent increase in crush strength of {approximately}7--19% as compared to quasi-static data and suggest that dynamic performance may be inferred from static tests. An uncertainty analysis estimates the error in these data is {+-} 11%.

More Details

High Shock, High Frequency Characteristics of a Mechanical Isolator for a Piezoresistive Accelerometer, the ENDEVCO 7270AM6*

Bateman, Vesta I.; Brown, Frederick A.; Nusser, Michael A.

A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories (SNL). An Extended Technical Assistance Program (ETAP) with the accelerometer manufacturer has resulted in a commercial mechanically isolated accelerometer that is available to the general public, the ENDEVCO 7270AM6*, for three shock acceleration ranges of 6,000 g, 20,000 g, and 60,000 g. The in-axis response shown in this report has acceptable frequency domain performance from DC to 10 kHz and 10(XO)over a temperature range of {minus}65 F to +185 F. Comparisons with other isolated accelerometers show that the ENDEVCO 7270AM6 has ten times the bandwidth of any other commercial isolator. ENDEVCO 7270AM6 cross-axis response is shown in this report.

More Details
8 Results
8 Results