Publications

14 Results
Skip to search filters

Regulatory fire test requirements for plutonium air transport packages : JP-4 or JP-5 vs. JP-8 aviation fuel

Figueroa Faria, Victor G.; Nicolette, Vernon F.

For certification, packages used for the transportation of plutonium by air must survive the hypothetical thermal environment specified in 10CFR71.74(a)(5). This regulation specifies that 'the package must be exposed to luminous flames from a pool fire of JP-4 or JP-5 aviation fuel for a period of at least 60 minutes.' This regulation was developed when jet propellant (JP) 4 and 5 were the standard jet fuels. However, JP-4 and JP-5 currently are of limited availability in the United States of America. JP-4 is very hard to obtain as it is not used much anymore. JP-5 may be easier to get than JP-4, but only through a military supplier. The purpose of this paper is to illustrate that readily-available JP-8 fuel is a possible substitute for the aforementioned certification test. Comparisons between the properties of the three fuels are given. Results from computer simulations that compared large JP-4 to JP-8 pool fires using Sandia's VULCAN fire model are shown and discussed. Additionally, the Container Analysis Fire (CAFE) code was used to compare the thermal response of a large calorimeter exposed to engulfing fires fueled by these three jet propellants. The paper then recommends JP-8 as an alternate fuel that complies with the thermal environment implied in 10CFR71.74.

More Details

Experimental-modeling approach for predicting radiation and conduction heat transfer through a uniform, highly-charring foam

20th Annual Conference on Recent Advances in Flame Retardancy of Polymeric Materials 2009

Erickson, Kenneth L.; Celina, Mathias C.; Hogan, Roy E.; Nicolette, Vernon F.; Aubert, James H.

Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. In fire environments, foams, such as polyurethanes and epoxies, can liquefy and flow during thermal decomposition, and evolved gases can cause pressurization and failure of sealed containers. In systems safety and hazard analyses, heat transfer and thermo-mechanical response in systems involving coupled foam decomposition, liquefaction, flow, and pressurization can be difficult to predict using numerical models. This is particularly true when liquefaction and flow create inhomogeneous "participating media" that behave inconsistently and significantly impact radiant heat transfer to encapsulated objects. To mitigate modeling issues resulting from foam liquefaction and flow, a hybrid polyurethane cyanate ester foam was developed that has mechanical properties similar to currently used polyurethane foams. The hybrid foam behaves predictably, does not liquefy, and forms approximately 50 percent by weight uniform char during decomposition in nitrogen. The char forms predictably and is a relatively uniform "participating medium." Experimental and modeling approaches were developed to predict radiation and conduction heat transfer to encapsulated objects before, during, and after foam decomposition. Model parameters were evaluated from independent small-scale experiments. Largerscale radiant heat transfer experiments involving encapsulated objects were done to provide data for model evaluation. Model predictions were within the variation in experimental results for the major portion of the experiments. © (2009) by BCC Research All rights reserved.

More Details

Hybrid polyurethane cyanate ester foam for fire environments

Conference Proceedings - Fire and Materials 2009, 11th International Conference and Exhibition

Erickson, Kenneth L.; Celina, Mathias C.; Nicolette, Vernon F.; Hogan, Roy E.; Aubert, James H.

Polymer foams are used as encapsulants to provide mechanical, electrical, and thermal isolation for engineered systems. In fire environments, the incident heat flux to a system or structure can cause foams to decompose. Commonly used foams, such as polyurethanes, often liquefy and flow during decomposition, and evolved gases can cause pressurization and ultimately failure of sealed containers. In systems safety and hazard analyses, numerical models are used to predict heat transfer to encapsulated objects or through structures. The thermo-mechanical response of systems involving coupled foam decomposition, liquefaction, and flow can be difficult to predict. Predicting pressurization of sealed systems is particularly challenging. To mitigate the issues caused by liquefaction and flow, hybrid polyurethane cyanate ester foams have been developed that have good adhesion and mechanical properties similar to currently used polyurethane and epoxy foams. The hybrid foam decomposes predictably during decomposition. It forms approximately 50 percent by weight char during decomposition in nitrogen. The foam does not liquefy. The charring nature of the hybrid foam has several advantages with respect to modeling heat transfer and pressurization. Those advantages are illustrated by results from recent radiant heat transfer experiments involving encapsulated objects, as well as results from numerical simulations of those experiments.

More Details

Well-characterized open pool experiment data and analysis for model validation and development

Nicolette, Vernon F.; Figueroa Faria, Victor G.

Four Well-Characterized Open Pool fires were conducted by Fire Science and Technology Department. The focus of the Well-Characterized Open Pool fire series was to provide environmental information for open pool fires on a physics first principal basis. The experiments measured the burning rate of liquid fuel in an open pool and the resultant heat flux to a weapon-sized object and the surrounding environment with well-characterized boundary and initial conditions. Results presented in this report include a general description of test observation (pre- and post-test), wind measurements, fire plume topology, average fuel recession and heat release rates, and incident heat flux to the pool and to the calorimeters. As expected, results of the experiments show a strong correlation between wind conditions, fuel vaporization (mass loss) rate, and incident heat flux to the fuel and ground surface and calorimeters. Numerical fire simulations using both temporally- and spatially-dependant wind boundary conditions were performed using the Vulcan fire code. Comparisons of data to simulation predictions showed similar trends; however, simulation-predicted incident heat fluxes were lower than measured.

More Details

A turbulence model for buoyant flows based on vorticity generation

Nicolette, Vernon F.; Tieszen, Sheldon R.; Black, Amalia R.; Domino, Stefan P.; O'Hern, Timothy J.

A turbulence model for buoyant flows has been developed in the context of a k-{var_epsilon} turbulence modeling approach. A production term is added to the turbulent kinetic energy equation based on dimensional reasoning using an appropriate time scale for buoyancy-induced turbulence taken from the vorticity conservation equation. The resulting turbulence model is calibrated against far field helium-air spread rate data, and validated with near source, strongly buoyant helium plume data sets. This model is more numerically stable and gives better predictions over a much broader range of mesh densities than the standard k-{var_epsilon} model for these strongly buoyant flows.

More Details
14 Results
14 Results