Publications

Results 1–25 of 45
Skip to search filters

Automatic data processing and data display system for the HERMES III accelerator

IEEE International Pulsed Power Conference

Coffey, Sean K.; Circle, Adam; Ulmen, Benjamin A.; Grabowski, Chris; Joseph, Nathan R.; Lewis, B.A.; Harper-Slaboszewicz, V.H.

This paper describes the software changes made to the data processing and display system for HERMES III accelerator at the Simulation Technology Laboratory (STL) at Sandia National Laboratories, New Mexico. The HERMES III accelerator is a gamma ray simulator producing 100kRad[Si] dose per shot with a full width half max pulse duration of 25 nanoseconds averaging six shots per day. For each accelerator test approximately 400 probe signals are recorded over approximately 65 digitizers. The original data processing system provided the operator a report summarizing the start of probe signal timings for groups of probes located within the power flow conductors. This timing information is indicative of power flow symmetry allowing the operator to make necessary adjustments prior to the next test. The report also provided data overlays concerning laser trigger light output, x-ray diode currents and x-ray source output. Power flow in the HERMES III accelerator is comprised of many circuit paths and detailed current and voltage information within these paths could provide a more thorough understanding of accelerator operation and performance, however this information was either not quickly available to the operators or the display of the data was not optimum. We expanded our data processing abilities to determine the current and voltage amplitudes throughout the power flow conductors and improved the data display abilities so data plots can be presented in a more organized fashion. We detail our efforts creating a software program capable of processing the 400 probe signals together with an organized method for displaying the dozens of current and voltage probes. This process is implemented immediately after all digitizer data has been collected so the operator is provided timing and power flow information shortly after each accelerator shot.

More Details

The Differential Absorption Hard X-Ray Spectrometer at the Z Facility

IEEE Transactions on Plasma Science

Bell, Kate S.; Coverdale, Christine A.; Ampleford, David A.; Bailey, James E.; Loisel, Guillaume P.; Harper-Slaboszewicz, V.H.; Schwarz, Jens S.; Moy, Kenneth

The differential absorption hard X-ray (DAHX) spectrometer is a diagnostic developed to measure time-resolved radiation between 60 keV and 2 MeV at the Z Facility. It consists of an array of seven Si PIN diodes in a tungsten housing that provides collimation and coarse spectral resolution through differential filters. DAHX is a revitalization of the hard X-ray spectrometer that was fielded on Z prior to refurbishment in 2006. DAHX has been tailored to the present radiation environment in Z to provide information on the power, spectral shape, and time profile of the hard emission by plasma radiation sources driven by the Z machine.

More Details

Coarse spectral characterization of warm x-rays at the Z facility using a filtered thermoluminescent dosimeter array

Review of Scientific Instruments

Harper-Slaboszewicz, V.H.; Ulmen, Benjamin A.; Parzyck, Christopher T.; Ampleford, David A.; McCourt, Andrew L.; Bell, Kate S.; Coverdale, Christine A.

A new collimated filtered thermoluminescent dosimeter (TLD) array has been developed at the Z facility to characterize warm x-rays (hν > 10 keV) produced by Z pinch radiation sources. This array includes a Kapton debris shield assembly to protect the TLDs from the source debris, a collimator array to limit the field of view of the TLDs to the source region, a filter wheel containing filters of aluminum, copper and tungsten up to 3 mm thick to independently filter each TLD, and a hermetically sealed cassette containing the TLDs as well as tungsten shielding on the sides and back of the array to minimize scattered radiation reaching the TLDs. Here experimental results from a krypton gas puff and silver wire array shot are analyzed using two different functional forms of the energy spectrum to demonstrate the ability of this diagnostic to consistently extend the upper end of the x-ray spectrum characterization from ~50 keV to >1 MeV.

More Details

Non-thermal x-ray emission from wire array z-pinches

Ampleford, David A.; Hansen, Stephanie B.; Jennings, Christopher A.; Webb, Timothy J.; Harper-Slaboszewicz, V.H.; Loisel, Guillaume P.; Flanagan, Timothy M.; Bell, Kate S.; Jones, Brent M.; Rochau, G.A.; Chittenden, Jeremy P.; Sherlock, Mark S.; Appelbe, Brian A.; Giuliani, John G.; Ouart, Nicholas O.; Seely, John S.; McPherson, Leroy A.

We report on experiments demonstrating the transition from thermally-dominated K-shell line emission to non-thermal, hot-electron-driven inner-shell emission for z pinch plasmas on the Z machine. While x-ray yields from thermal K-shell emission decrease rapidly with increasing atomic number Z, we find that non-thermal emission persists with favorable Z scaling, dominating over thermal emission for Z=42 and higher (hn ≥ 17keV). Initial experiments with Mo (Z=42) and Ag (Z=47) have produced kJ-level emission in the 17-keV and 22-keV Kα lines respectively. We will discuss the electron beam properties that could excite these non - thermal lines. We also report on experiments that have attempted to control non - thermal K - shell line emission by modifying the wire array or load hardware setup.

More Details

Parallel operation of multiple closely spaced small aspect ratio rod pinches

IEEE Transactions on Plasma Science

Harper-Slaboszewicz, V.H.; Leckbee, Joshua L.; Bennett, Nichelle; Madrid, Elizabeth A.; Rose, David V.; Thoma, Carsten; Welch, Dale R.; Lake, Patrick W.; McCourt, Andrew L.

A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and postshot analysis of the experimental results are supported by 3-D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface of the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.

More Details

Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

Physics of Plasmas

Renk, T.J.; Harper-Slaboszewicz, V.H.; Mikkelson, K.A.; Ginn, W.C.; Ottinger, P.F.; Schumer, J.W.

We investigate the generation of intense pulsed focused ion beams at the 6MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an "axial" pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. A new "radial" pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. In addition, a substantial high-energy ion population is also identified propagating in the "reverse" direction, i.e., from the back side of the anode foil in the electron beam dump.

More Details
Results 1–25 of 45
Results 1–25 of 45