Substantial decreases in the cost of solar and energy storage systems create suitable conditions for implementing microgrids that operate independently from the main transmission/distribution grids. Such microgrids concept is particularly of interest for islanded and remote communities, which oftentimes rely on expensive energy resources to supply their demand. This paper presents the design of a microgrid for an island community, in which transmission infrastructure (an aging subsea cable that connects to the mainland grid) is replaced by solar and energy storage systems. Based on historical demand data and solar generation forecasts, an optimization framework is proposed to determine sizes of the microgrid components such that the local generation resources are self-sufficient and reliable. Results of this analysis show that, indeed, solar and energy storage systems are viable choices for implementing a microgrid and replacing transmission infrastructure.
Variable energy resources (VERs) like wind and solar are the future of electricity generation as we gradually phase out fossil fuel due to environmental concerns. Nations across the globe are also making significant strides in integrating VERs into their power grids as we strive toward a greener future. However, integration of VERs leads to several challenges due to their variable nature and low inertia characteristics. In this paper, we discuss the hurdles faced by the power grid due to high penetration of wind power generation and how energy storage system (ESSs) can be used at the grid-level to overcome these hurdles. We propose a new planning strategy using which ESSs can be sized appropriately to provide inertial support as well as aid in variability mitigation, thus minimizing load curtailment. A probabilistic framework is developed for this purpose, which takes into consideration the outage of generators and the replacement of conventional units with wind farms. Wind speed is modeled using an autoregressive moving average technique. The efficacy of the proposed methodology is demonstrated on the WSCC 9-bus test system.
This report provides a study of the potential impacts of climate change on intermittent renewable energy resources, battery storage, and resource adequacy in Public Service Company of New Mexico’s Integrated Resource Plan for 2020 – 2040. Climate change models and available data were first evaluated to determine uncertainty and potential changes in solar irradiance, temperature, and wind speed in NM in the coming decades. These changes were then implemented in solar and wind energy models to determine impacts on renewable energy resources in NM. Results for the extreme climate-change scenario show that the projected wind power may decrease by ~13% due to projected decreases in wind speed. Projected solar power may decrease by ~4% due to decreases in irradiance and increases in temperature in NM. Uncertainty in these climate-induced changes in wind and solar resources was accommodated in probabilistic models assuming uniform distributions in the annual reductions in solar and wind resources. Uncertainty in battery storage performance was also evaluated based on increased temperature, capacity fade, and degradation in round-trip efficiency. The hourly energy balance was determined throughout the year given uncertainties in the renewable energy resources and energy storage. The loss of load expectation (LOLE) was evaluated for the 2040 No New Combustion portfolio and found to increase from 0 days/year to a median value of ~2 days/year due to potential reductions in renewable energy resources and battery storage performance and capacity. A rank-regression analyses revealed that battery round-trip efficiency was the most significant parameter that impacted LOLE, followed by solar resource, wind resource, and battery fade. An increase in battery storage capacity to ~25,000 – 30,000 MWh from a baseline value of ~14,000 MWh was required to reduce the median value of LOLE to ~0.2 days/year with consideration of potential climate impacts and battery degradation.
Many remote communities are subject to poor electric service, which low power quality and reliability being common concerns. To compensate, many isolated communities employ diesel generation units to bolster utility inputs or to fully support key loads in the event of an outage. While this is effective, it can be a very expensive mode of operation requiring oversized units to ensure reliable power. Declining prices of both renewable generation and energy storage systems have the potential to improve this situation, though careful planning is needed to make these hybrid energy systems financially attractive. This paper presents analytical methods to enable informed decision making with respect to future planning incorporating renewables and energy storage systems to enhance system reliability and reduce operating costs. These methods are demonstrated in a case study for the San Carlos Apache Tribe, which is located in a sparsely populated region next to Coolidge, Arizona that has limited power generation and transmission resources. Currently, the energy tariffs are high and the system suffers from frequent power interruptions, adding up to an average of around 100 power interruptions per year. To reduce electricity costs and improve power quality, the tribe is currently installing solar photovoltaic arrays in several sites inside of the reservation. We have analyzed the potential benefits and optimal of energy storage systems associated with solar power generation to reduce the tribe's costs with electricity and contribute to improve reliability of critical loads. Results show that energy storage has the potential to reduce electricity costs significantly and provide backup power for critical loads during several hours.
This paper presents a literature review on current practices and trends on cyberphysical security of grid-connected battery energy storage systems (BESSs). Energy storage is critical to the operation of Smart Grids powered by intermittent renewable energy resources. To achieve this goal, utility-scale and consumer-scale BESS will have to be fully integrated into power systems operations, providing ancillary services and performing functions to improve grid reliability, balance power and demand, among others. This vision of the future power grid will only become a reality if BESS are able to operate in a coordinated way with other grid entities, thus requiring significant communication capabilities. The pervasive networking infrastructure necessary to fully leverage the potential of storage increases the attack surface for cyberthreats, and the unique characteristics of battery systems pose challenges for cyberphysical security. This paper discusses a number of such threats, their associated attack vectors, detection methods, protective measures, research gaps in the literature and future research trends.
This paper presents Energy Storage-based Packetized Delivery of Electricity (ES-PDE) that is radically different from the operation of today's grid. Under ES-PDE, loads are powered by energy storage systems (ESS) most of the time and only receive packets of electricity periodically to power themselves and charge their ESSs. Therefore, grid operators can schedule the delivery of electricity in a manner that utilizes existing grid infrastructure. Since customers are powered by the co-located ESSs, when grid outages occur, they can be self-powered for some time before the grid is fully restored.In this paper, two operating schemes for ES-PDE are proposed. A Mixed-Integer-Linear-Programming (MILP) optimization is developed to find the optimal packet delivery schedule for each operating scheme. A case study is conducted to demonstrate the operation of ES-PDE.
Energy storage systems (ESS) can provide multiple services to the electric grid, each with a unique charge/discharge profile. One category of such services comprises power quality applications, where ESS is deployed to protect downstream customers from events or disturbances that might result in poor power quality. This paper analyzes ESS usage to simultaneously mitigate two power quality issues: harmonic distortion and low power factor. Techniques for solving each one of these issues are already known by utilities; however, the main contribution of this paper is the utilization of a single asset to mitigate both power quality issues simultaneously. An optimization model was developed to determine the ESS dispatch that would satisfy the requirements for these stacked applications. Through case studies of a medium-size commercial customer, it was demonstrated that ESS can, indeed, correct and/or mitigate poor power quality issues.
In this work, a model predictive dispatch framework is proposed to utilize Energy Storage Systems (ESSs) for voltage regulation in distribution systems. The objective is to utilize ESS resources to assist with voltage regulation while reducing the utilization of legacy devices such as on-load tap changers (OLTCs), capacitor banks, etc. The proposed framework is part of a two-stage solution where a secondary layer computes the ESS dispatch every 5-min based on 1-hr generation and load forecasts while a primary layer would handle the real-time uncertainties. In this paper, the secondary layer to dispatch the ESS is formulated. Simulation results show that dispatching ESSs by providing active and reactive support can minimize the OLTC movement in distribution networks thus increasing the lifetime of legacy mechanical devices.
The lack of inertial response from non-synchronous, inverter-based generation in microgrids makes the power system vulnerable to a large rate of change of frequency (ROCOF) and frequency excursions. Energy storage systems (ESSs) can be utilized to provide fast-frequency support to prevent such large excursions in the system. However, fast-frequency support is a power-intensive application that has a significant impact on the ESS lifetime. In this paper, a framework that allows the ESS operator to provide fast-frequency support as a service is proposed. The framework maintains the desired quality-of-service (limiting the ROCOF and frequency) while taking into account the ESS lifetime and physical limits. The framework utilizes moving horizon estimation (MHE) to estimate the frequency deviation and ROCOF from noisy phase-locked loop (PLL) measurements. These estimates are employed by a model predictive control (MPC) algorithm that computes control actions by solving a finite-horizon, online optimization problem. Additionally, this approach avoids oscillatory behavior induced by delays that are common when using low-pass filters as with traditional derivative-based (virtual inertia) controllers. MATLAB/Simulink simulations on a test system from Cordova, Alaska, show the effectiveness of the MHE-MPC approach to reduce frequency deviations and ROCOF of a low-inertia microgrid.
In this work, we introduce the concept of virtual transmission using large-scale energy storage systems. We also develop an optimization framework to maximize the monetized benefits of energy storage providing virtual transmission in wholesale markets. These benefits often come from relieving congestion for a transmission line, including both reduction in energy cost for the downstream loads and increase in production revenue for the upstream generators of the congested line. A case study is conducted using ISO-New England data to demonstrate the framework.
The displacement of rotational generation and the consequent reduction in system inertia is expected to have major stability and reliability impacts on modern power systems. Fast-frequency support strategies using energy storage systems (ESSs) can be deployed to maintain the inertial response of the system, but information regarding the inertial response of the system is critical for the effective implementation of such control strategies. In this paper, a moving horizon estimation (MHE)-based approach for online estimation of inertia constant of low inertia microgrids is presented. Based on the frequency measurements obtained in response to a non-intrusive excitation signal from an ESS, the inertia constant was estimated using local measurements from the ESS's phase-locked loop. The proposed MHE formulation was first tested in a linearized power system model, followed by tests in a modified microgrid benchmark from Cordova, Alaska. Even under moderate measurement noise, the technique was able to estimate the inertia constant of the system well within ±20% of the true value. Estimates provided by the proposed method could be utilized for applications such as fast-frequency support, adaptive protection schemes, and planning and procurement of spinning reserves.
Energy storage systems (ESSs) are being deployed widely due to numerous benefits including operational flexibility, high ramping capability, and decreasing costs. This study investigates the economic benefits provided by battery ESSs when they are deployed for market-related applications, considering the battery degradation cost. A comprehensive investment planning framework is presented, which estimates the maximum revenue that the ESS can generate over its lifetime and provides the necessary tools to investors for aiding the decision making process regarding an ESS project. The applications chosen for this study are energy arbitrage and frequency regulation. Lithium-ion batteries are considered due to their wide popularity arising from high efficiency, high energy density, and declining costs. A new degradation cost model based on energy throughput and cycle count is developed for Lithium-ion batteries participating in electricity markets. The lifetime revenue of ESS is calculated considering battery degradation and a cost-benefit analysis is performed to provide investors with an estimate of the net present value, return on investment and payback period. The effect of considering the degradation cost on the estimated revenue is also studied. The proposed approach is demonstrated on the IEEE Reliability Test System and historical data from PJM Interconnection.