Publications

43 Results
Skip to search filters

Mechanical Environment Test Specifications Derived from Equivalent Energy in Fixed Base Modes, with Frequency Shifts from Unit-to-Unit Variability

Conference Proceedings of the Society for Experimental Mechanics Series

Skousen, Troy J.; Mayes, R.L.

The purpose of mechanical environment testing is to prove that designs can withstand the loads imparted on them under operating conditions. This is dependent not only on the test article construction but also on the loads imparted through its boundary conditions. Current practices develop environment test specifications from field responses using a single degree of freedom input control with no consideration for the mild to severe deviations from the field motion caused by the laboratory boundary condition. Test specifications are considered conservative with the assumption that most of the steps taken to generate them (e.g., straight-line envelopes and adding 3 dB) result in appropriately conservative specifications. However, without an accurate quantifiable measure of conservatism, designs can be easily mis-tested yielding unnecessarily high costs. Previous work showed a modal model for components excited through base-mounted fixtures to generate specifications with much lower uncertainty and with guaranteed quantifiable conservatism. The method focused on reproducing in-service modal energy in the test configuration by controlling the 6 degree-of-freedom input motion. That work generated test specifications with enough conservatism to account for unit-to-unit variability in the damping of the test article. This paper focuses on generating conservative specifications while considering resonant frequency shifts as a parameter for unit-to-unit variability.

More Details

Mechanical Environment Test Specifications Derived from Equivalent Energy in Fixed Base Modes with Frequency Shifts from Unit-to-Unit Variability [Slides]

Skousen, Troy J.; Mayes, R.L.

The outline for this presentation includes: Motivation, Test hardware and loads, Modal test of RC on 6 DOF test fixture, and Analysis--develop one specification accounting for unit-to-unit variability and develop independently tailored test specifications for unit-to-unit variability.

More Details

Mechanical environment test specifications derived from equivalent energy in fixed base modes

Conference Proceedings of the Society for Experimental Mechanics Series

Skousen, Troy J.; Mayes, R.L.

The main point of mechanical environment testing is to prove that designs can withstand the loads imparted on them while being exposed to in-service conditions. This is dependent not only on the test article construction, but also the loads imparted through its boundary conditions. Current practices for developing environment test specification are typically based on inadequate information reduced to single input point control with large uncertainty as compared to the field environment. Yet the test specifications are considered conservative, with the assumption that most of the adjustment for uncertainty is conservatism. For base mounted components, a modal model is presented that can be used to generate specifications with much lower uncertainty and with guaranteed quantifiable conservatism. In this method, the modal energies in the fixed base modes of the article due to the in-service loads are determined. Using the fixed base modes of the test article as a basis, the test specification is derived by determining what fixture motion is required to emulate the in-service environment. The specification method accounts for frequency shifts between the in-service and test configurations. Variability in nominal test articles can be included in the derivation of the test specifications. Real hardware under in-service environment loads and in a ground test fixture and loading configuration are considered.

More Details

Comparison of multi-axis testing of the BARC structure with varying boundary conditions

Conference Proceedings of the Society for Experimental Mechanics Series

Rohe, Daniel P.; Schultz, Ryan S.; Schoenherr, Tyler F.; Skousen, Troy J.; Jones, Richard J.

The Box Assembly with Removable Component (BARC) structure was developed as a challenge problem for those investigating boundary conditions and their effect on structural dynamic tests. To investigate the effects of boundary conditions on the dynamic response of the Removable Component, it was tested in three configurations, each with a different fixture and thus a different boundary condition. A “truth” configuration test with the component attached to its next-level assembly (the Box) was first performed to provide data that multi-axis tests of the component would aim to replicate. The following two tests aimed to reproduce the component responses of the first test through multi-axis testing. The first of these tests is a more “traditional” vibration test with the removable component attached to a “rigid” plate fixture. A second set of these tests replaces the fixture plate with flexible fixtures designed using topology optimization and created using additive manufacturing. These two test approaches are compared back to the truth test to determine how much improvement can be obtained in a laboratory test by using a fixture that is more representative of the compliance of the component’s assembly.

More Details

Designing hardware for the boundary condition round robin challenge

Sound and Vibration

Soine, David E.; Jones, Richard J.; Harvie, Julie M.; Skousen, Troy J.; Schoenherr, Tyler F.

Qualification of products to their vibration and shock requirements in a laboratory setting consists of two basic steps. The first is the quantification of the product's mechanical environment in the field. The second is the process of testing the product in the laboratory to ensure it is robust enough to survive the field environment. The latter part is the subject of the “Boundary Condition for Component Qualification” challenge problem. This paper describes the challenges in determining the appropriate boundary conditions and input stimulus required to qualify the product. This paper also describes the step sand analyses that were taken to design a set of hardware that demonstrates the issue and can be used by round robin challenge participants to investigate the problem.

More Details

Direct-field acoustic testing of a flight system : logistics, challenges, and results

Stasiunas, Eric C.; Skousen, Troy J.; Babuska, Vit B.; Gurule, David J.

Before a spacecraft can be considered for launch, it must first survive environmental testing that simulates the launch environment. Typically, these simulations include vibration testing performed using an electro-dynamic shaker. For some spacecraft however, acoustic excitation may provide a more severe loading environment than base shaker excitation. Because this was the case for a Sandia Flight System, it was necessary to perform an acoustic test prior to launch in order to verify survival due to an acoustic environment. Typically, acoustic tests are performed in acoustic chambers, but because of scheduling, transportation, and cleanliness concerns, this was not possible. Instead, the test was performed as a direct field acoustic test (DFAT). This type of test consists of surrounding a test article with a wall of speakers and controlling the acoustic input using control microphones placed around the test item, with a closed-loop control system. Obtaining the desired acoustic input environment - proto-flight random noise input with an overall sound pressure level (OASPL) of 146.7 dB-with this technique presented a challenge due to several factors. An acoustic profile with this high OASPL had not knowingly been obtained using the DFAT technique prior to this test. In addition, the test was performed in a high-bay, where floor space and existing equipment constrained the speaker circle diameter. And finally, the Flight System had to be tested without contamination of the unit, which required a contamination bag enclosure of the test unit. This paper describes in detail the logistics, challenges, and results encountered while performing a high-OASPL, direct-field acoustic test on a contamination-sensitive Flight System in a high-bay environment.

More Details

Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS)

Walraven, J.A.; Cox, James C.; Skousen, Troy J.; Ohlhausen, J.A.; Jenkins, Mark W.; Jokiel, Bernhard J.; Parson, Ted B.; Tang, Michelle D.

Qualification of microsystems for weapon applications is critically dependent on our ability to build confidence in their performance, by predicting the evolution of their behavior over time in the stockpile. The objective of this work was to accelerate aging mechanisms operative in surface micromachined silicon microelectromechanical systems (MEMS) with contacting surfaces that are stored for many years prior to use, to determine the effects of aging on reliability, and relate those effects to changes in the behavior of interfaces. Hence the main focus was on 'dormant' storage effects on the reliability of devices having mechanical contacts, the first time they must move. A large number ({approx}1000) of modules containing prototype devices and diagnostic structures were packaged using the best available processes for simple electromechanical devices. The packaging processes evolved during the project to better protect surfaces from exposure to contaminants and water vapor. Packages were subjected to accelerated aging and stress tests to explore dormancy and operational environment effects on reliability and performance. Functional tests and quantitative measurements of adhesion and friction demonstrated that the main failure mechanism during dormant storage is change in adhesion and friction, precipitated by loss of the fluorinated monolayer applied after fabrication. The data indicate that damage to the monolayer can occur at water vapor concentrations as low as 500 ppm inside the package. The most common type of failure was attributed to surfaces that were in direct contact during aging. The application of quantitative methods for monolayer lubricant analysis showed that even though the coverage of vapor-deposited monolayers is generally very uniform, even on hidden surfaces, locations of intimate contact can be significantly depleted in initial concentration of lubricating molecules. These areas represent defects in the film prone to adsorption of water or contaminants that can cause movable structures to adhere. These analysis methods also indicated significant variability in the coverage of lubricating molecules from one coating process to another, even for identical processing conditions. The variability was due to residual molecules left in the deposition chamber after incomplete cleaning. The coating process was modified to result in improved uniformity and total coverage. Still, a direct correlation was found between the resulting static friction behavior of MEMS interfaces, and the absolute monolayer coverage. While experimental results indicated that many devices would fail to start after aging, the modeling approach used here predicted that all the devices should start. Adhesion modeling based upon values of adhesion energy from cantilever beams is therefore inadequate. Material deposition that bridged gaps was observed in some devices, and potentially inhibits start-up more than the adhesion model indicates. Advances were made in our ability to model MEMS devices, but additional combined experimental-modeling studies will be needed to advance the work to a point of providing predictive capability. The methodology developed here should prove useful in future assessments of device aging, however. Namely, it consisted of measuring interface properties, determining how they change with time, developing a model of device behavior incorporating interface behavior, and then using the age-aware interface behavior model to predict device function.

More Details
43 Results
43 Results