Publications

14 Results
Skip to search filters

Node Monitoring as a Fault Detection Countermeasure against Information Leakage within a RISC-V Microprocessor

Cryptography

Owen, Donald E.; Joseph, Jithin J.; Mannos, Tom M.; Dziki, Brian J.

Advanced, superscalar microprocessors (μP) are highly susceptible to wear-out failures because of their highly complex, densely packed circuit structure and extreme operational frequencies. Although many types of fault detection and mitigation strategies have been proposed, none have addressed the specific problem of detecting faults that lead to information leakage events on I/O channels of the μP. Information leakage can be defined very generally as any type of output that the executing program did not intend to produce. In this work, we restrict this definition to output that represents a security concern, and in particular, to the leakage of plaintext or encryption keys, and propose a counter-based countermeasure to detect faults that cause this type of leakage event. Fault injection (FI) experiments are carried out on two RISC-V microprocessors emulated as soft cores on a Xilinx multi-processor System-on-chip (MPSoC) FPGA. The μP designs are instrumented with a set of counters that records the number of transitions that occur on internal nodes. The transition counts are collected from all internal nodes under both fault-free and faulty conditions, and are analyzed to determine which counters provide the highest fault coverage and lowest latency for detecting leakage faults. We show that complete coverage of all leakage faults is possible using only a single counter strategically placed within the branch compare logic of the μPs.

More Details

Information Leakage Analysis Using a Co-Design-Based Fault Injection Technique on a RISC-V Microprocessor

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

Plusquellic, Jim; Owen, Donald E.; Mannos, Tom M.; Dziki, Brian

The RISC-V instruction set architecture open licensing policy has spawned a hive of development activity, making a range of implementations publicly available. The environments in which RISC-V operates have expanded correspondingly, driving the need for a generalized approach to evaluating the reliability of RISC-V implementations under adverse operating conditions or after normal wear-out periods. Fault injection (FI) refers to the process of changing the state of registers or wires, either permanently or momentarily, and then observing execution behavior. The analysis provides insight into the development of countermeasures that protect against the leakage or corruption of sensitive information, which might occur because of unexpected execution behavior. In this article, we develop a hardware-software co-design architecture that enables fast, configurable fault emulation and utilize it for information leakage and data corruption analysis. Modern system-on-chip FPGAs enable building an evaluation platform, where control elements run on a processor(s) (PS) simultaneously with the target design running in the programmable logic (PL). Software components of the FI system introduce faults and report execution behavior. A pair of RISC-V FI-instrumented implementations are created and configured to execute the Advanced Encryption Standard and Twister algorithms. Key and plaintext information leakage and degraded pseudorandom sequences are both observed in the output for a subset of the emulated faults.

More Details

Semi-supervised learning and ASIC path verification

Proceedings - 2018 1st IEEE International Conference on Artificial Intelligence for Industries, AI4I 2018

Obert, James O.; Mannos, Tom M.

To counter manufacturing irregularities and ensure ASIC design integrity, it is essential that robust design verification methods are employed. It is possible to ensure such integrity using ASIC static timing analysis (STA) and machine learning. In this research, uniquely devised machine and statistical learning methods which quantify anomalous variations in Register Transfer Level (RTL) or Graphic Design System II (GDSII) formats are discussed. To measure the variations in ASIC analysis data, the timing delays in relation to path electrical characteristics are explored. It is shown that semi-supervised learning techniques are powerful tools in characterizing variations within STA path data and has much potential for identifying anomalies in ASIC RTL and GDSII design data.

More Details

FPGA Authentication Methods

Brotz, Jay K.; Hymel, Ross W.; Punnoose, Ratish J.; Mannos, Tom M.; Grant, Neil G.; Evans, Neil E.

One of the greatest challenges facing designers of equipment to be used in a nuclear arms control treaty is how to convince the other party in the treaty to trust its results and functionality. Whether the host provides equipment meant to prove treaty obligations and the inspector needs to gain that trust (commonly referred to as authentication), or the inspector provides this equipment and the host needs to gain this trust (commonly considered to be included in certification), one party generally has higher confidence in the equipment at the start of a treaty regime and the other party needs to gain that confidence prior to use. While we focus on authentication in this document—that is, the inspector gaining confidence in host-provided equipment—our conclusions will likely apply to host certification of inspector-provided equipment.

More Details
14 Results
14 Results