In order to meet 2025 goals for enhanced peak power (100 kW), specific power (50 kW/L), and reduced cost (3.3 $\$$/kW) in a motor that can operate at ≥ 20,000 rpm, improved soft magnetic materials must be developed. Better performing soft magnetic materials will also enable rare earth free electric motors. In fact, replacement of permanent magnets with soft magnetic materials was highlighted in the Electrical and Electronics Technical Team (EETT) Roadmap as a R&D pathway for meeting 2025 targets. Eddy current losses in conventional soft magnetic materials, such as silicon steel, begin to significantly impact motor efficiency as rotational speed increases. Soft magnetic composites (SMCs), which combine magnetic particles with an insulating matrix to boost electrical resistivity (ρ) and decrease eddy current losses, even at higher operating frequencies (or rotational speeds), are an attractive solution. Today, SMCs are being fabricated with values of ρ ranging between 10-3 to 10-1 μohm∙m, which is significantly higher than 3% silicon steel (~0.05 μohm∙m). The isotropic nature of SMCs is ideally suited for motors with 3D flux paths, such as axial flux motors. Additionally, the manufacturing cost of SMCs is low and they are highly amenable to advanced manufacturing and net-shaping into complex geometries, which further reduces manufacturing costs. There is still significant room for advancement in SMCs, and therefore additional improvements in electrical machine performance. For example, despite the inclusion of a non-magnetic insulating material, the electrical resistivities of SMCs are still far below that of soft ferrites (10 – 108 μohm∙m).
More efficient power conversion devices are able to transmit greater electrical power across larger distances to satisfy growing global electrical needs. A critical requirement to achieve more efficient power conversion are the soft magnetic materials used as core materials in transformers, inductors, and motors. To that effect it is well known that the use of non-equilibrium microstructures, which are, for example, nanocrystalline or consist of single phase solid solutions, can yield high saturation magnetic polarization and high electrical resistivity necessary for more efficient soft magnetic materials. In this work, we synthesized CoFe – P soft magnetic alloys containing nanocrystalline, single phase solid solution microstructures and studied the effect of a secondary intermetallic phase on the saturation magnetic polarization and electrical resistivity of the consolidated alloy. Single phase solid solution CoFe – P alloys were prepared through mechanically alloying metal powders and phase decomposition was observed after subsequent consolidation via spark plasma sintering (SPS) at various temperatures. The secondary intermetallic phase was identified as the orthorhombic (CoxFe1-x)2P phase and the magnetic properties of the (CoxFe1-x)2P intermetallic phase were found to be detrimental to the soft magnetic properties of the targeted CoFe – P alloy.
Barium titanate (BTO) is a ferroelectric material used in capacitors because of its high bulk dielectric constant. However, the impact of the size of BTO on its dielectric constant is not yet fully understood and is highly contested. Here, we present an investigation into the dielectric constant of BTO nanoparticles with diameters ranging between 50 and 500 nm. BTO nanoparticles were incorporated into acrylonitrile butadiene styrene and injection molded into parallel plate capacitors, which were used to determine nanocomposite dielectric constants. The dielectric constants of BTO nanoparticles were obtained by combining experimental measurements with computational results from COMSOL simulations of ABS-matrix nanocomposites containing BTO. The dielectric constant of BTO was observed to be relatively constant at nanoparticle diameters as small as 200 nm but sharply declined at smaller nanoparticle sizes. Overall, these results will be useful in the development of improved energy storage and power conditioning systems utilizing BTO nanoparticles.
Barium titanate (BTO) nanoparticles show great potential for use in electrostatic capacitors with high energy density. This includes both polymer composite and sintered capacitors. However, questions about the nanoparticles' size distribution, amount of agglomeration, and surface ligand effect on performance properties remain. Reducing particle agglomeration is a crucial step to understanding the properties of nanoscale particles, as agglomeration has significant effects on the composite dielectric constant. BTO surface functionalization using phosphonic acids is known reduce BTO nanoparticle agglomeration. We explore solution synthesized 10 nm BTO particles with tert-butylphosphonic acid ligands. Recent methods to quantifying agglomeration using an epoxy matrix before imaging shows that tert-butylphosphonic acid ligands reduce BTO agglomeration by 33%. Thermometric, spectroscopic, and computational methods provide confirmation of ligand binding and provide evidence of multiple ligand binding modes on the BTO particle surface.
Using the thesis of W.R. Nolan (cite) as a guide, Cobalt Iron (CoFe) powders were reacted with 0.1 wt.% and 0.2 wt.% phosphoric acid in a 20:1 ratio of acetone to phosphoric acid. The powders were then dried at room temperature. The resulting phosphate coated CoFe was then mixed with 0.75 wt.% of the lubricant N,N' ethylene bis-stearamide (trade name: Acrawax C) and hot pressed to form a consolidated soft magnetic material referred to as CoFeP. With an avenue of synthesis for CoFeP determined, a proper amount of stock was synthesized for continuous “brick” production. While under current optimization, these 1x1 mm magnetic bricks will ultimately be placed and secured along the inside wall of each MK Magnetics transformer core by an appropriate CoFeP dispersed epoxy. As of now each brick has been produced though a pressing and annealing process via square 2x2 cm die. Before a brick is made a pressure calculation is run to ensure the dies maximum operating pressure is not exceeded. Figure 1. ensures the user’s safety by showing that the tons-on-ram required for a 2x2 cm square die to reach 760 MPa is below the point of die failure.
For transformers and inductors to meet the world’s growing demand for electrical power, more efficient soft magnetic materials with high saturation magnetic polarization and high electrical resistivity are needed. This work aimed at the development of a soft magnetic composite synthesized via spark plasma sintering with both high saturation magnetic polarization and high electrical resistivity for efficient soft magnetic cores. CoFe powder particles coated with an insulating layer of Al2O3 were used as feedstock material to improve the electrical resistivity while retaining high saturation magnetic polarization. By maintaining a continuous non-magnetic Al2O3 phase throughout the material, both a high saturation magnetic polarization, above 1.5 T, and high electrical resistivity, above 100 μΩ·m, were achieved. Through microstructural characterization of samples consolidated at various temperatures, the role of microstructural evolution on the magnetic and electronic properties of the composite was elucidated. Upon consolidation at relatively high temperature, the CoFe was to found plastically deform and flow into the Al2O3 phase at the particle boundaries and this phenomenon was attributed to low resistivity in the composite. In contrast, at lower consolidation temperatures, perforation of the Al2O3 phase was not observed and a high electrical resistivity was achieved, while maintaining a high magnetic polarization, ideal for more efficient soft magnetic materials for transformers and inductors.
Soft-magnetic alloys exhibit exceptional functional properties that are beneficial for a variety of electromagnetic applications. These alloys are conventionally manufactured into sheet or bar forms using well-established ingot metallurgy practices that involve hot- and cold-working steps. However, recent developments in process metallurgy have unlocked opportunities to directly produce bulk soft-magnetic alloys with improved, and often tailorable, structure–property relationships that are unachievable conventionally. The emergence of unconventional manufacturing routes for soft-magnetic alloys is largely motivated by the need to improve the energy efficiency of electromagnetic devices. In this review, literature that details emerging manufacturing approaches for soft-magnetic alloys is overviewed. This review covers (1) severe plastic deformation, (2) recent advances in melt spinning, (3) powder-based methods, and (4) additive manufacturing. These methods are discussed in comparison with conventional rolling and bar processing. Perspectives and recommended future research directions are also discussed.
In this study, dense bulk iron nitrides (Fe x N) were synthesized for the first time ever using spark plasma sintering (SPS) of Fe x N powders. The Fe 4 N phase of iron nitride in particular has significant potential to serve as a new soft magnetic material in both transformer and inductor cores and electrical machines. The density of SPSed Fe x N increased with SPS temperature and pressure. The microstructure of the consolidated bulk Fe x N was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. XRD revealed a primary phase of Fe 4 N with secondary phases of Fe 3 N and metallic iron. Finite element analysis (FEA) was also applied to investigate and explain localized heating and temperature distribution during SPS. The effects of processing on interface bonding formation and phase evolution were investigated and discussed in detail to provide insight into fundamental phenomena and microstructural evolution in SPSed Fe x N.
In order to meet 2025 goals for enhanced peak power (100 kW), specific power (50 kW/L), and reduced cost (3.3 $/kW) in a motor that can operate at ≥ 20,000 rpm, improved soft magnetic materials must be developed. Better performing soft magnetic materials will also enable electric motors without rare earth elements. In fact, replacement of permanent magnets with soft magnetic materials was highlighted in the Electrical and Electronics Technical Team (EETT) Roadmap as a R&D pathway for meeting 2025 targets. Eddy current losses in conventional soft magnetic materials, such as silicon steel, begin to significantly impact motor efficiency as rotational speed is increased. Soft magnetic composites (SMCs), which combine magnetic particles with an insulating matrix to boost electrical resistivity (ρ) and decrease eddy current losses, even at higher operating frequencies (or rotational speeds), are an attractive solution. Today, SMCs are being fabricated with values of ρ ranging between 10-3 to 10-1 μohm∙m, which is significantly higher than 3% silicon steel (~0.5 μohm∙m). The isotropic nature of SMCs is ideally suited for motors with 3D flux paths, such as axial flux motors. Additionally, the manufacturing cost of SMCs is low and they are highly amenable to advanced manufacturing and net-shaping into complex geometries, which further reduces manufacturing costs. There is still significant room for advancement in SMCs, and therefore additional improvements in electrical machine performance. For example, despite the inclusion of a non-magnetic insulating material, the electrical resistivities of SMCs are still far below that of soft ferrites (10 – 108 μohm∙m).
Barium titanate (BTO) is a ferroelectric perovskite material used in energy storage applications because of its high dielectric constant. A previous study showed that the dielectric constant for BTO nanoparticles drastically increases to over 15,000 at a particle size of 70 nm. This result is highly contested, but its implications to energy storage motivated our investigation into the dielectric constants of BTO nanoparticles that are incorporated into a polymer matrix. We developed a novel method of using image processing techniques on transmission electron microscope images of BTO-polymer nanocomposites. Data on the positions, shapes, sizes, and orientations of BTO nanoparticles were used to build more realistic computational models that simulate the dielectric behavior of the nanocomposites. Here, we investigate the relationship between regions of enhanced electric field and the composite dielectric constant.
This paper evaluates the performance of a novel nano-composite core inductor. In this digest, a brief explanation of the superparamagnetic magnetite nanoparticle core is given along with magnetic characterization results and simulated design parameters and dimensions. A nearly flat relative permeability (μr) of around 5 is measured for the magnetic material to 1 MHz. A synchronous buck converter with nano-composite inductor was constructed and evaluated; the converter demonstrates a 1% improvement in conversion efficiency at higher currents (4% reduction in electrical losses), compared to an identical circuit with a benchmark commercial ferrite inductor.
Novel multilayered FeSiCrB-Fe x N (x = 2-4) metallic glass composites were fabricated using spark plasma sintering of FeSiCrB amorphous ribbons (Metglas 2605SA3 alloy) and Fe x N (x = 2-4) powder. Crystalline Fe x N can serve as a high magnetic moment, high electrical resistance binder, and lamination material in the consolidation of amorphous and nanocrystalline ribbons, mitigating eddy currents while boosting magnetic performance and stacking factor in both wound and stacked soft magnetic cores. Stacking factors of nearly 100% can be achieved in an amorphous ribbon/iron nitride composite. FeSiCrB-Fe x N multilayered metallic glass composites prepared by spark plasma sintering have the potential to serve as a next-generation soft magnetic material in power electronics and electrical machines.
Soft magnetic materials are key to the efficient operation of the next generation of power electronics and electrical machines (motors and generators). Many new materials have been introduced since Michael Faraday's discovery of magnetic induction, when iron was the only option. However, as wide bandgap semiconductor devices become more common in both power electronics and motor controllers, there is an urgent need to further improve soft magnetic materials.These improvements will be necessary to realize the full potential in efficiency, size, weight, and power of high-frequency power electronics and high-rotational speed electrical machines. Here we provide an introduction to the field of soft magnetic materials and their implementation in power electronics and electrical machines. Additionally, we review the most promising choices available today and describe emerging approaches to create even better soft magnetic materials.
Significant reductions recently seen in the size of wide-bandgap power electronics have not been accompanied by a relative decrease in the size of the corresponding magnetic components. To achieve this, a new generation of materials with high magnetic saturation and permeability are needed. Here, we develop gram-scale syntheses of superparamagnetic Fe/FexOy core-shell nanoparticles and incorporate them as the magnetic component in a strongly magnetic nanocomposite. Nanocomposites are typically formed by the organization of nanoparticles within a polymeric matrix. However, this approach can lead to high organic fractions and phase separation; reducing the performance of the resulting material. Here, we form aminated nanoparticles that are then cross-linked using epoxy chemistry. The result is a magnetic nanoparticle component that is covalently linked and well separated. By using this 'matrix-free' approach, we can substantially increase the magnetic nanoparticle fraction, while still maintaining good separation, leading to a superparamagnetic nanocomposite with strong magnetic properties.
This article focuses on the finite element modeling of toroidal microinductors, employing first-of-its-kind nanocomposite magnetic core material and superparamagnetic iron nanoparticles covalently cross-linked in an epoxy network. Energy loss mechanisms in existing inductor core materials are covered as well as discussions on how this novel core material eliminates them providing a path toward realizing these low form factor devices. Designs for both a 2 μH output and a 500 nH input microinductor are created via the model for a high-performance buck converter. Both modeled inductors have 50 wire turns, less than 1 cm3 form factors, less than 1 Ω AC resistance, and quality factors, Q's, of 27 at 1 MHz. In addition, the output microinductor is calculated to have an average output power of 7 W and a power density of 3.9 kW/in3 by modeling with the 1st generation iron nanocomposite core material.
Monson, Todd M.; Shi, Chenyang S.; Billinge, Simon J.; Bang, Sun H.; Bean, Nate B.; de Sugny, Jean-Claude d.; Gambee, Robert G.; Puma, Eric P.; Hightower, Adrian H.; Haskell, Richard C.
Van Ginhoven, Renee M.; Monson, Todd M.; Stevens, Tyler E.; Vargas, David A.; Beck, Marisol B.; Kaufman, Jonas K.; Martos-Repath, Isabel M.; Orellana, Cesar O.; Zhao, Carmel Z.; Haskell, Richard C.; Dato, Albert D.
Niobium and niobium nitride thin films are transitioning from fundamental research toward wafer scale manufacturing with technology drivers that include superconducting circuits and electronics, optical single photon detectors, logic, and memory. Successful microfabrication requires precise control over the properties of sputtered superconducting films, including oxidation. Previous work has demonstrated the mechanism in oxidation of Nb and how film structure could have deleterious effects upon the superconducting properties. This study provides an examination of atmospheric oxidation of NbN films. By examination of the room temperature sheet resistance of NbN bulk oxidation was identified and confirmed by secondary ion mass spectrometry. As a result, Meissner magnetic measurements confirmed the bulk oxidation not observed with simple cryogenic resistivity measurements.
This work studies the microstructural evolution of nanocrystalline (<1 µm) barium titanate (BaTiO3), and presents high pressure in field-assisted sintering (FAST) as a robust methodology to obtain >100 nm BaTiO3 compacts. Using FAST, two commercial ~50 nm powders were consolidated into compacts of varying densities and grain sizes. Microstructural inhomogeneities were investigated for each case, and an interpretation is developed using a modified Monte Carlo Potts (MCP) simulation. Two recurrent microstructural inhomogeneities are highlighted, heterogeneous grain growth and low-density regions, both ubiqutously present in all samples to varying degrees. In the worst cases, HGG presents an area coverage of 52%. Because HGG is sporadic but homogenous throughout a sample, the catalyst (e.g., the local segregation of species) must be, correspondingly, distributed in a homogenous manner. MCP demonstrates that in such a case, a large distance between nucleating abnormal grains is required—otherwise abnormal grains prematurely impinge on each other, and their size is not distinguishable from that of normal grains. Compacts sintered with a pressure of 300 MPa and temperatures of 900 °C, were 99.5% dense and had a grain size of 90±24 nm. These are unprecedented results for commercial BaTiO3 powders or any starting powder of 50 nm particle size—other authors have used 16 nm lab-produced powder to obtain similar results.
The ability to track nuclear material is a challenge for resiliency of complex systems, e.g., harsh environments. RF tags, frequently used in national security applications, cannot be used for technological, operational, or safety reasons. Magnetic Smart Tags (MaST) is a novel tag technology based on magnetoelastic sensing that circumvents these issues. This technology is enabled by a new, cost-effective, batch manufacturing electrochemical deposition (ECD) process. This new advancement in fabrication enables multi-frequency tags capable of providing millions of possible codes for tag identification unlike existing theft deterrent tags that can convey only a single bit of information. Magnetostrictive 70% Co: 30% Fe was developed as the base alloy comprising the magnetoelastic resonator transduction element. Saturation magnetostriction, S , has been externally measured by the Naval Research Laboratory to be as high as 78 ppm. Description of a novel MEMS variable capacitive test structure is described for future measurements of this parameter.
Extensive study of photorefractive polymeric composites photosensitized with semiconductor nanocrystals has yielded data indicating that the inclusion of such nanocrystals enhances the charge-carrier mobility, and subsequently leads to a reduction in the photorefractive response time. Unfortunately, the included nanocrystals may also act as a source of deep traps, resulting in diminished diffraction efficiencies as well as reduced two beam coupling gain coefficients. Nonetheless, previous studies indicate that this problem is mitigated through the inclusion of semiconductor nanocrystals possessing a relatively narrow band-gap. Here, we fully exploit this property by doping PbS nanocrystals into a newly formulated photorefractive composite based on molecular triphenyldiamine photosensitized with C60. Through this approach, response times of 399 μs are observed, opening the door for video and other high-speed applications. It is further demonstrated that this improvement in response time occurs with little sacrifice in photorefractive efficiency, with internal diffraction efficiencies of 72% and two-beam-coupling gain coefficients of 500 cm-1 being measured. A thorough analysis of the experimental data is presented, supporting the hypothesized mechanism of enhanced charge mobility without the accompaniment of superfluous traps. It is anticipated that this approach can play a significant role in the eventual commercialization of this class of materials.
The use of colloidal processing principles in the formation of ceramic materials is well appreciated for developing homogeneous material properties in sintered products, enabling novel forming techniques for porous ceramics or 3D printing, and controlling microstructure to enable optimized material properties. The solution processing of electronic ceramic materials often involves multiple cationic elements or dopants to affect microstructure and properties. Material stability must be considered through the steps of colloidal processing to optimize desired component properties. This review provides strategies for preventing material degradation in particle synthesis, milling processes, and dispersion, with case studies of consolidation using spark plasma sintering of these systems. The prevention of multication corrosion in colloidal dispersions can be achieved by utilizing conditions similar to the synthesis environment or by the development of surface passivation layers. The choice of dispersing surfactants can be related to these surface states, which are of special importance for nanoparticle systems. A survey of dispersant chemistries related to some commonsynthesis conditions is provided for perovskite systems as an example. These principles can be applied tomany colloidal systems related to electronic and optical applications.
The redox-active bis(imino)acenapthene (BIAN) ligand was used to synthesize homoleptic aluminum, chromium, and gallium complexes of the general formula (BIAN)3M. The resulting compounds were characterized using X-ray crystallography, NMR, EPR, magnetic susceptibility and cyclic voltammetry measurements and modeled using both DFT and ab initio wavefunction calculations to compare the orbital contributions of main group elements and transition metals in ligand-based redox events. Complexes of this type have the potential to improve the energy density and electrolyte stability of grid-scale energy storage technologies, such as redox flow batteries, through thermodynamically-clustered redox events.
Magnetic nanoparticles are the next tool in medical diagnoses and treatment in many different biomedical applications, including magnetic hyperthermia as alternative treatment for cancer and bacterial infections, as well as the disruption of biofilms. The colloidal stability of the magnetic nanoparticles in a biological environment is crucial for efficient delivery. A surface that can be easily modifiable can also improve the delivery and imaging properties of the magnetic nanoparticle by adding targeting and imaging moieties, providing a platform for additional modification. The strategy presented in this work includes multiple nitroDOPA anchors for robust binding to the surface tied to the same polymer backbone as multiple poly(ethylene oxide) chains for steric stability. This approach provides biocompatibility and enhanced stability in fetal bovine serum (FBS) and phosphate buffer saline (PBS). As a proof of concept, these polymer-particles complexes were then modified with a near infrared dye and utilized in characterizing the integration of magnetic nanoparticles in biofilms. The work presented in this manuscript describes the synthesis and characterization of a nontoxic platform for the labeling of near IR-dyes for bioimaging.
The synthesis of well-defined nanoparticle materials has been an area of intense investigation, but size control in nanoparticle syntheses is largely empirical. Here, we introduce a general method for fine size control in the synthesis of nanoparticles by establishing steady state growth conditions through the continuous, controlled addition of precursor, leading to a uniform rate of particle growth. This approach, which we term the "xtended LaMer mechanism" allows for reproducibility in particle size from batch to batch as well as the ability to predict nanoparticle size by monitoring the early stages of growth. We have demonstrated this method by applying it to a challenging synthetic system: magnetite nanoparticles. To facilitate this reaction, we have developed a reproducible method for synthesizing an iron oleate precursor that can be used without purification. We then show how such fine size control affects the performance of magnetite nanoparticles in magnetic hyperthermia.
The development of an electrodeposition process for cobalt/iron (CoFe) alloys with minimal oxygen concentration and controlled stoichiometry is necessary for the advancement of magnetostrictive device functionalities. CoFe alloy films were electrodeposited out of a novel chemistry onto copper test structures enabling magnetic displacement testing for magnetostriction calculations. Using a combination of additives that served as oxygen scavengers, grain refiners, and complexing agents in conjunction with a pulsed plating technique, CoFe films were synthesized at thicknesses as high as 10μm with less than 8 at% oxygen at a stoichiometry of 70-75% Co and 25-30% Fe. X-Ray diffraction (XRD) analysis confirmed that these films had a crystal structure consistent with 70% Co 30% Fe Wairuaite with a slight lattice contraction due to Co doping in the film. A novel characterization technique was used to measure the displacement of the CoFe films electrodeposited, as a function of applied magnetic bias, in order to determine the saturation magnetostriction (λS) of the material. With this chemistry and a tailored pulse plating regime, λS values as high as 172 ± 25ppm have been achieved. This is believed by the authors to be the highest reported value of magnetostriction for an electrodeposited CoFe film.
Monson, Todd M.; Bang, Sun H.; Bean, Nate B.; de Sugny, Jean-Claude d.; Gambee, Robert G.; Puma, Eric P.; Haskell, Richard C.; Hightower, Adrian H.; Shi, Chenyang S.; Billinge, Simon J.; Ma, Qing M.
The photosensitization of photorefractive polymeric composites for operation at 633 nm is accomplished through the inclusion of narrow band gap semiconductor nanocrystals composed of PbS. Unlike previous studies involving photosensitization of photorefractive polymer composites with inorganic nanocrystals, we employ an off-resonance approach where the first excitonic transition associated with the PbS nanocrystals lies at ∼1220 nm and not the wavelength of operation. Using this methodology, internal diffraction efficiencies exceeding 82%, two-beam-coupling gain coefficients of 211 cm-1, and response times of 34 ms have been observed, representing some of the best figures of merit reported for this class of materials. These data demonstrate the ability of semiconductor nanocrystals to compete effectively with traditional organic photosensitizers. In addition to superior performance, this approach also offers an inexpensive and easy means by which to photosensitize composite materials. The photoconductive characteristics of the composites used for this study will also be considered.
Magnetic nitrides, if manufactured in bulk form, would provide designers of transformers and inductors with a new class of better performing and affordable soft magnetic materials. According to experimental results from thin films and/or theoretical calculations, magnetic nitrides would have magnetic moments well in excess of current state of the art soft magnets. Furthermore, magnetic nitrides would have higher resistivities than current transformer core materials and therefore not require the use of laminates of inactive material to limit eddy current losses. However, almost all of the magnetic nitrides have been elusive except in difficult to reproduce thin films or as inclusions in another material. Now, through its ability to reduce atmospheric nitrogen, the electrochemical solution growth (ESG) technique can bring highly sought after (and previously inaccessible) new magnetic nitrides into existence in bulk form. This method utilizes a molten salt as a solvent to solubilize metal cations and nitrogen ions produced electrochemically and form nitrogen compounds. Unlike other growth methods, the scalable ESG process can sustain high growth rates (~mm/hr) even under reasonable operating conditions (atmospheric pressure and 500 °C). Ultimately, this translates into a high throughput, low cost, manufacturing process. The ESG process has already been used successfully to grow high quality GaN. Below, the experimental results of an exploratory express LDRD project to access the viability of the ESG technique to grow magnetic nitrides will be presented.
Monson, Todd M.; Bang, Sun H.; Bean, Nate B.; de Sugny, Jean-Claude d.; Gambee, Robert G.; Puma, Eric P.; Haskell, Richard C.; Shi, Chenyang S.; Billinge, Simon J.; Ma, Qing M.
Ceramic based nanocomposites have recently demonstrated the ability to provide enhanced permittivity, increased dielectric breakdown strength, and reduced electromechanical strain making them potential materials systems for high energy density applications. A systematic characterization and optimization of barium titanate and PLZT based nanoparticle composites employing a glass or polymer matrix to yield a high energy density component will be presented. This work will present the systematic characterization and optimization of barium titanate and lead lanthanum zirconate titanate nanoparticle based ceramics. The nanoparticles have been synthesized using solution and pH-based synthesis processing routes and employed to fabricate polycrystalline ceramic and nanocomposite based components. The dielectric/ferroelectric properties of these various components have been gauged by impedance analysis and electromechanical response and will be discussed.
Devices with nano-crystalline microstructures have been shown to possess improved electrical properties. Further advantages include lower processing temperatures; however, device fabrication from nano-particles poses several challenges. This presentation describes a novel aqueous synthesis technique to produce large batch sizes with minimal waste. The precipitate is readily converted at less than 550 C to a phase pure, nano-crystalline Pb{sub 0.88} La{sub 0.12}(Zr{sub 0.70} Ti{sub 0.30}){sub 0.97} O{sub 3} powder. Complications and solutions to sample fabrication from nano-powders are discussed, including the use of glass sintering aids to improve density and further lower sintering temperatures. Finally, electrical properties are presented to demonstrate the potential benefits of nano-crystalline capacitors.
Attractive for numerous technological applications, ferroelectronic oxides constitute an important class of multifunctional compounds. Intense experimental efforts have been made recently in synthesizing, processing and understanding ferroelectric nanostructures. This work will present the systematic characterization and optimization of barium titanate and lead lanthanum zirconate titanate nanoparticle based ceramics. The nanoparticles have been synthesized using several solution and pH-based synthesis processing routes and employed to fabricate polycrystalline ceramic and nanocomposite based components. The dielectric and ferroelectric properties of these various components have been gauged by impedance analysis and electromechanical response and will be discussed.
Nano-materials have shown unique crystallite-dependent properties that present distinct advantages for dielectric applications. PLZT is an excellent dielectric material used in several applications and may benefit crystallite engineering; however complex systems such as PLZT require well-controlled synthesis techniques. An aqueous based synthesis route has been developed, using standard precursor chemicals and scalable techniques to produce large batch sizes. The synthesis will be briefly covered, followed by a more in-depth discussion of incorporating nanocrystalline PLZT into a working device. Initial electrical properties will be presented illustrating the potential benefits and associated difficulties of working with PLZT nano-materials.
In the past decade, organic optoelectronic devices have made much advances that they become viable technologies. These organic optoelectronic devices involve integration of organics with highly dissimilar materials, e.g. metals, semiconductors, and oxides, with critical device actions taking places at the organic-inorganic interfaces. For examples, in organic photovoltaics, exciton dissociation and carrier separation occur at the donor-acceptor heterojunctions; careful design of junction area and band alignment is critical for optimizing device performance. In this talk, I will show two examples of modifying organic-inorganic interfaces with alkanethiol self-assembled monolayers (SAMs) to improve device performance. Alkanethiols are large band gap molecules that are expected to act as a transport barrier. When the Au cathode in polyfluorene OLEDs is modified with alkanethiol SAMs, the current is found to be lower while the output luminescent intensity higher, leading to higher external quantum efficiency at a given current density. In ZnO-polythiophene hybrid solar cells, increasing alkanethiol SAM length surprisingly leads to higher photocurrent, despite the SAM reduces electron transfer. I will discuss the mechanisms behind these unexpected improvements.
The ceramic nanocomposite capacitor goals are: (1) more than double energy density of ceramic capacitors (cutting size and weight by more than half); (2) potential cost reductino (factor of >4) due to decreased sintering temperature (allowing the use of lower cost electrode materials such as 70/30 Ag/Pd); and (3) lower sintering temperature will allow co-firing with other electrical components.