Publications

Results 1–200 of 231
Skip to search filters

NMR spectroscopy of coin cell batteries with metal casings

Science Advances

Walder, Brennan W.; Conradi, Mark S.; Borchardt, John J.; Merrill, Laura C.; Sorte, Eric G.; Deichmann, Eric J.; Anderson, Travis M.; Alam, Todd M.; Harrison, Katharine L.

Battery cells with metal casings are commonly considered incompatible with nuclear magnetic resonance (NMR) spectroscopy because the oscillating radio-frequency magnetic fields ("rf fields") responsible for excitation and detection of NMR active nuclei do not penetrate metals. Here, we show that rf fields can still efficiently penetrate nonmetallic layers of coin cells with metal casings provided "B1 damming"configurations are avoided. With this understanding, we demonstrate noninvasive high-field in situ 7Li and 19F NMR of coin cells with metal casings using a traditional external NMR coil. This includes the first NMR measurements of an unmodified commercial off-the-shelf rechargeable battery in operando, from which we detect, resolve, and separate 7Li NMR signals from elemental Li, anodic β-LiAl, and cathodic LixMnO2 compounds. Real-time changes of β-LiAl lithium diffusion rates and variable β-LiAl 7Li NMR Knight shifts are observed and tied to electrochemically driven changes of the β-LiAl defect structure.

More Details

Modes of Disorder in Poly(carbon monofluoride)

Journal of the American Chemical Society

Walder, Brennan W.; Alam, Todd M.

Poly(carbon monofluoride), or (CF)n, is a layered fluorinated graphite material consisting of nanosized platelets. Here, we present experimental multidimensional solid-state NMR spectra of (CF)n, supported by density functional theory (DFT) calculations of NMR parameters, which overhauls our understanding of structure and bonding in the material by elucidating many ways in which disorder manifests. We observe strong 19F NMR signals conventionally assigned to elongated or "semi-ionic"C-F bonds and find that these signals are in fact due to domains where the framework locally adopts boat-like cyclohexane conformations. We calculate that C-F bonds are weakened but are not elongated by this conformational disorder. Exchange NMR suggests that conformational disorder avoids platelet edges. We also use a new J-resolved NMR method for disordered solids, which provides molecular-level resolution of highly fluorinated edge states. The strings of consecutive difluoromethylene groups at edges are relatively mobile. Topologically distinct edge features, including zigzag edges, crenellated edges, and coves, are resolved in our samples by solid-state NMR. Disorder should be controllable in a manner dependent on synthesis, affording new opportunities for tuning the properties of graphite fluorides.

More Details

Cs absorption capacity and selectivity of crystalline and amorphous Hf and Zr phosphates

Polyhedron

Nagasaka, Cocoro A.; Kozma, Karoly; Brunson, Kieran G.; Russo, Chris J.; Alam, Todd M.; Nyman, May

Removal of radioactive Cs from sodium-rich solutions is a technical challenge that goes back to post World War II nuclear waste storage and treatment; and interest in this topic was reinvigorated by the Fukushima-Daiichi nuclear power plant disaster, 10 years ago. Since the 1960′s there has been considerable focus on layered Zr phosphates as robust inorganic sorbents for separation of radionuclides such as Cs. Here we present synthesis and characterization, and direct comparison of Cs sorption capacity and selectivity of four related materials: 1) crystalline α-Zr phosphate and α-Hf phosphate, and 2) amorphous analogues of these. Powder X-ray diffraction, thermogravimetry, solid-state 31P magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy, and compositional analysis (inductively coupled plasma optical emission spectroscopy and mass spectroscopy, ICP OES and ICP MS) provided formulae; respectively M(HPO4)2⋅1H2O and M(HPO4)2⋅4H2O (M = Hf, Zr) for crystalline and amorphous analogues. Maximum Cs loading, competitive Cs-Na selectivity and maximum Cs-Na loading followed by the above characterizations plus 133Cs MAS-NMR spectroscopy revealed that amorphous analogues are considerably better Cs-sorbents (based on maximum Cs-loading and selectivity over Na) than the well-studied crystalline Zr-analogue. Additionally, crystalline α-Hf phosphate is better Cs-sorbent than crystalline α-Zr phosphate. All these studies consistently show that Hf phosphate is less crystallize than Zr phosphate, when obtained under similar or identical synthesis conditions. We attribute this to lower solubility of Hf phosphate compared to Zr phosphate, preventing ‘defect healing’ during the synthesis process.

More Details

Artificial neural network prediction of self-diffusion in pure compounds over multiple phase regimes

Physical Chemistry Chemical Physics

Allers, Joshua P.; Garzon, Fernando; Alam, Todd M.

Artificial neural networks (ANNs) were developed to accurately predict the self-diffusion constants for pure components in liquid, gas and super critical phases. The ANNs were tested on an experimental database of 6625 self-diffusion constants for 118 different chemical compounds. The presence of multiple phases results in a heavy skew in the distribution of diffusion constants and multiple approaches were used to address this challenge. First, an ANN was developed with the raw diffusion values to assess what the main drawbacks of this direct method were. The first approach for improving the predictions involved taking the log 10 of diffusion to provide a more uniform distribution and reduce the range of target output values used to develop the ANN. The second approach involved developing individual ANNs for each phase using the raw diffusion values. Results show that the log transformation leads to a model with the best self-diffusion constant predictions and an overall average absolute deviation (AAD) of 6.56%. The resultant ANN is a generalized model that can be used to predict diffusion across all three phases and over a diverse group of compounds. The importance of each input feature was ranked using a feature addition method revealing that the density of the compound has the largest impact on the ANN prediction of self-diffusion constants in pure compounds.

More Details

Influence of Polymorphs and Local Defect Structures on NMR Parameters of Graphite Fluorides

Journal of Physical Chemistry C

Rimsza, Jessica R.; Walder, Brennan W.; Alam, Todd M.

The role of local molecular structure on calculated 13C and 19F NMR chemical shifts for graphite fluoride materials was explored by using gauge-including projector augmented wave (GIPAW) computational methods for different periodic crystal polymorphs and density functional theory (DFT) gauge-including atomic orbital (GIAO) computational methods for individual graphite fluoride platelets, i.e., fluorinated graphene (FG). The impact of stacking sequences, d-spacing, and ring conformations on fully fluorinated graphite fluoride structures was investigated. A range of different defects including Stone-Wales, F and C vacancies, void formation, and F inversion were also evaluated using FG structures. These calculations show that distinct chemical shift signatures exist for many of these polymorphs and defects, therefore providing a basis for spectral assignment and development of models describing the mean local CF structure in disordered graphite fluoride materials.

More Details

Machine Learning-Based Upscaling of Finite-Size Molecular Dynamics Diffusion Simulations for Binary Fluids

Journal of Physical Chemistry Letters

Leverant, Calen J.; Harvey, Jacob H.; Alam, Todd M.

Molecular diffusion coefficients calculated using molecular dynamics (MD) simulations suffer from finite-size (i.e., finite box size and finite particle number) effects. Results from finite-sized MD simulations can be upscaled to infinite simulation size by applying a correction factor. For self-diffusion of single-component fluids, this correction has been well-studied by many researchers including Yeh and Hummer (YH); for binary fluid mixtures, a modified YH correction was recently proposed for correcting MD-predicted Maxwell-Stephan (MS) diffusion rates. Here we use both empirical and machine learning methods to identify improvements to the finite-size correction factors for both self-diffusion and MS diffusion of binary Lennard-Jones (LJ) fluid mixtures. Using artificial neural networks (ANNs), the error in the corrected LJ fluid diffusion is reduced by an order of magnitude versus existing YH corrections, and the ANN models perform well for mixtures with large dissimilarities in size and interaction energies where the YH correction proves insufficient.

More Details

Computational and Experimental Characterization of Intermediate Amorphous Phases in Geological Materials

Rimsza, Jessica R.; Sorte, Eric G.; Alam, Todd M.

In the subsurface, MgO engineered barriers are employed at the Waste Isolation Pilot Plant (WIPP), a transuranic waste repository near Carlsbad, NM. During service, the MgO will be exposed to high concentration brine environments and may form stable intermediate phases that can alter the barriers effectiveness. Here, MgO was aged in water and three different brine solutions. X-ray diffraction (XRD) and 1H nuclear magnetic resonance (NMR) analysis were performed to identify the formation of secondary phases. After aging, ~4% of the MgO was hydrated and fine-grained powders resulted in greater loss of crystallinity than hard granular grains. 1H magic angle spinning (MAS) NMR spectra resolved minor phases not visible in XRD, indicating that diverse 1H environments are present along with Mg(OH)2. Density functional theory (DFT) simulations for several proposed Mg-O-H, Mg-CI-O-H, and Na-O-H containing phases were performed to index peaks in the experimental 1H MAS NMR spectra. While proposed intermediate crystal structures exhibited overlapping 1H NMR peaks, Mg-O-H intermediates were attributed to the growth of the 1.0-0.0ppm peak while the Mg-CI-O-H structures contributed to the 2.5- 5.0ppm peak in the chloride containing brines. Overall, NMR analysis of aged MgO indicates the formation of a range of possible intermediate structures that cannot be resolved with XRD analysis alone.

More Details

Formation of monomeric Sn(ii) and Sn(iv) perfluoropinacolate complexes and their characterization by 119Sn Mössbauer and 119Sn NMR spectroscopies

Dalton Transactions

Elinburg, Jessica K.; Hyre, Ariel S.; McNeely, James; Alam, Todd M.; Klenner, Steffen; Pöttgen, Rainer; Rheingold, Arnold L.; Doerrer, Linda H.

The synthesis and characterization of a series of Sn(ii) and Sn(iv) complexes supported by the highly electron-withdrawing dianionic perfluoropinacolate (pinF) ligand are reported herein. Three analogs of [SnIV(pinF)3]2- with NEt3H+ (1), K+ (2), and {K(18C6)}+ (3) counter cations and two analogs of [SnII(pinF)2]2- with K+ (4) and {K(15C5)2}+ (5) counter cations were prepared and characterized by standard analytical methods, single-crystal X-ray diffraction, and 119Sn Mössbauer and NMR spectroscopies. The six-coordinate SnIV(pinF) complexes display 119Sn NMR resonances and 119Sn Mössbauer spectra similar to SnO2 (cassiterite). In contrast, the four-coordinate SnII(pinF) complexes, featuring a stereochemically-active lone pair, possess low 119Sn NMR chemical shifts and relatively high quadrupolar splitting. Furthermore, the Sn(ii) complexes are unreactive towards both Lewis bases (pyridine, NEt3) and acids (BX3, Et3NH+). Calculations confirm that the Sn(ii) lone pair is localized within the 5s orbital and reveal that the Sn 5px LUMO is energetically inaccessible, which effectively abates reactivity. This journal is

More Details

Curing behavior, chain dynamics, and microstructure of high Tg thiol-acrylate networks with systematically varied network heterogeneity

Polymer

Jones, Brad H.; Alam, Todd M.; Lee, Sangwoo; Celina, Mathias C.; Allers, Joshua P.; Park, Sungmin; Chen, Liwen; Martinez, Estevan J.; Unangst, Jaclynn L.

A series of networks is introduced with systematically varied network heterogeneity and high overall values of average glass transition temperature (Tg), based on polymerization of rigid acrylate and aromatic thiol monomers. The curing behavior, chain dynamics, and microstructure of these networks were investigated through a combination of dynamic mechanical analysis and infrared spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and x-ray scattering, respectively. The maximum Tg achieved during cure can be related to the breadth of the mechanical loss tangent, as others have previously suggested, as well as the temperature dependence of the chain dynamics in the network as monitored by 1H NMR. In addition, the microstructures of the networks are characterized by periodic, fractal microgels with characteristic length scales of ca. 20–40 nm. Intriguingly, this structural motif persists in the more homogeneous networks exhibiting comparatively narrow glass transitions and chain dynamics, indicating that dynamically homogeneous networks can still exhibit significant compositional heterogeneity at the mesoscale.

More Details

Heterogeneous polymer dynamics explored using static 1H NMR spectra

International Journal of Molecular Sciences

Alam, Todd M.; Allers, Joshua P.; Jones, Brad H.

NMR spectroscopy continues to provide important molecular level details of dynamics in different polymer materials, ranging from rubbers to highly crosslinked composites. It has been argued that thermoset polymers containing dynamic and chemical heterogeneities can be fully cured at temperatures well below the final glass transition temperature (Tg). In this paper, we described the use of static solid-state 1H NMR spectroscopy to measure the activation of different chain dynamics as a function of temperature. Near Tg, increasing polymer segmental chain fluctuations lead to dynamic averaging of the local homonuclear proton-proton (1H-1H) dipolar couplings, as reflected in the reduction of the NMR line shape second moment (M2) when motions are faster than the magnitude of the dipolar coupling. In general, for polymer systems, distributions in the dynamic correlation times are commonly expected. To help identify the limitations and pitfalls of M2 analyses, the impact of activation energy or, equivalently, correlation time distributions, on the analysis of 1H NMR M2 temperature variations is explored. It is shown by using normalized reference curves that the distributions in dynamic activation energies can be measured from the M2 temperature behavior. An example of the M2 analysis for a series of thermosetting polymers with systematically varied dynamic heterogeneity is presented and discussed.

More Details

Machine learning prediction of self-diffusion in Lennard-Jones fluids

Journal of Chemical Physics

Allers, Joshua P.; Harvey, Jacob H.; Garzon, Fernando; Alam, Todd M.

Different machine learning (ML) methods were explored for the prediction of self-diffusion in Lennard-Jones (LJ) fluids. Using a database of diffusion constants obtained from the molecular dynamics simulation literature, multiple Random Forest (RF) and Artificial Neural Net (ANN) regression models were developed and characterized. The role and improved performance of feature engineering coupled to the RF model development was also addressed. The performance of these different ML models was evaluated by comparing the prediction error to an existing empirical relationship used to describe LJ fluid diffusion. It was found that the ANN regression models provided superior prediction of diffusion in comparison to the existing empirical relationships.

More Details

Quantification of uncoupled spin domains in spin-abundant disordered solids

International Journal of Molecular Sciences

Walder, Brennan W.; Alam, Todd M.

Materials often contain minor heterogeneous phases that are difficult to characterize yet nonetheless significantly influence important properties. Here we describe a solid-state NMR strategy for quantifying minor heterogenous sample regions containing dilute, essentially uncoupled nuclei in materials where the remaining nuclei experience heteronuclear dipolar couplings. NMR signals from the coupled nuclei are dephased while NMR signals from the uncoupled nuclei can be amplified by one or two orders of magnitude using Carr-Meiboom-Purcell-Gill (CPMG) acquisition. The signal amplification by CPMG can be estimated allowing the concentration of the uncoupled spin regions to be determined even when direct observation of the uncoupled spin NMR signal in a single pulse experiment would require an impractically long duration of signal averaging. We use this method to quantify residual graphitic carbon using13 C CPMG NMR in poly(carbon monofluoride) samples synthesized by direct fluorination of carbon from various sources. Our detection limit for graphitic carbon in these materials is better than 0.05 mol%. The accuracy of the method is discussed and comparisons to other methods are drawn.

More Details

Computational and experimental 1H-NMR study of hydrated Mg-based minerals

Molecules

Sorte, Eric G.; Rimsza, Jessica R.; Alam, Todd M.

Magnesium oxide (MgO) can convert to different magnesium-containing compounds depending on exposure and environmental conditions. Many MgO-based phases contain hydrated species allowing 1H-nuclear magnetic resonance (NMR) spectroscopy to be used in the characterization and quantification of proton-containing phases; however, surprisingly limited examples have been reported. Here, 1H-magic angle spinning (MAS) NMR spectra of select Mg-based minerals are presented and assigned. These experimental results are combined with computational NMR density functional theory (DFT) periodic calculations to calibrate the predicted chemical shielding results. This correlation is then used to predict the NMR shielding for a series of different MgO hydroxide, magnesium chloride hydrate, magnesium perchlorate, and magnesium cement compounds to aid in the future assignment of 1H-NMR spectra for complex Mg phases.

More Details

Investigating Chain Dynamics in Highly Crosslinked Polymers using Solid-State 1H NMR Spectroscopy

Journal of Polymer Science, Part B: Polymer Physics

Alam, Todd M.; Jones, Brad H.

Solid state 1H NMR line-shape analysis and (double quantum) DQ 1H NMR experiments have been used to investigate the segmental and polymer chain dynamics as a function of temperature for a series of thermosetting epoxy resins produced using different diamine curing agents. In these thermosets, chemical crosslinks introduce topological constraints leading to residual stresses during curing. Materials containing a unique ferrocene-based diamine (FcDA) curing agent were evaluated to address the role of the ferrocene fluxional process on the atomic-level polymer dynamics. At temperatures above the glass transition temperature (Tg), the DQ 1H NMR experiments provided a measure of the relative effective crosslink and entanglement densities for these materials and revealed significant polymer chain dynamic heterogeneity in the FcDA-cured thermosets. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1143–1156.

More Details

NMR spin diffusion measurements in disordered polymers: Insights and limitations

Physical Review Materials

Sorte, Eric G.; Frischknecht, Amalie L.; Alam, Todd M.

Nuclear magnetic resonance (NMR) spin diffusion measurements have been widely used to estimate domain sizes in a variety of polymer materials. In cases where the domains are well-described as regular, repeating structures (e.g., lamellar, cylindrical channels, monodispersed spherical domains), the domain sizes estimated from NMR spin diffusion experiments agree with the characteristic length scales obtained from small-angle x-ray scattering and microscopy. In our laboratory, recent NMR spin diffusion experiments for hydrated sulfonated Diels Alder poly(phenylene) (SDAPP) polymer membranes have revealed that assuming a simple structural model can often misrepresent or overestimate the domain size in situations where more complex and disordered morphologies exist. Molecular dynamics simulations of the SDAPP membranes predict a complex heterogeneous hydrophilic domain structure that varies with the degree of sulfonation and hydration and is not readily represented by a simple repeating domain structure. This heterogeneous morphology results in NMR-measured domain sizes that disagree with length scales estimated from the ionomer peak in scattering experiments. Here we present numerical NMR spin diffusion simulations that show how structural disorder in the form of domain size distributions or domain clustering can significantly impact the spin diffusion analysis and estimated domain sizes. Simulations of NMR spin diffusion with differing domain size distributions and domain clustering are used to identify the impact of the heterogeneous domain structure and highlight the limitations of using NMR spin diffusion techniques for irregular structures.

More Details

Impact of Hydration and Sulfonation on the Morphology and Ionic Conductivity of Sulfonated Poly(phenylene) Proton Exchange Membranes

Macromolecules

Sorte, Eric G.; Paren, Benjamin A.; Rodriguez, Christina G.; Fujimoto, Cy F.; Jenkins, Cassandria E.; Abbott, Lauren J.; Lynd, Nathaniel A.; Winey, Karen I.; Frischknecht, Amalie F.; Alam, Todd M.

Multiple computational and experimental techniques are used to understand the nanoscale morphology and water/proton transport properties in a series of sulfonated Diels-Alder poly(phenylene) (SDAPP) membranes over a wide range of temperature, hydration, and sulfonation conditions. New synthetic methods allow us to sulfonate the SDAPP membranes to much higher ion exchange capacity levels than has been previously possible. Nanoscale phase separation between the hydrophobic polymer backbone and the hydrophilic water/sulfonic acid groups was observed for all membranes studied. We find good agreement between structure factors calculated from atomistic molecular dynamics (MD) simulations and those measured by X-ray scattering. With increasing hydration, the scattering ionomer peak in SDAPP is found to decrease in intensity. This intensity decrease is shown to be due to a reduction of scattering contrast between the water and polymer and is not indicative of any loss of nanoscale phase separation. Both MD simulations and density functional theory (DFT) calculations show that as hydration levels are increased, the nanostructure morphology in SDAPP evolves from isolated ionic domains to fully percolated water networks containing progressively weaker hydrogen bond strengths. The conductivity of the membranes is measured by electrical impedance spectroscopy and the equivalent proton conductivity calculated from pulsed-field-gradient (PFG) NMR diffusometry measurements of the hydration waters. Comparison of the measured and calculated conductivity reveals that in SDAPP the proton conduction mechanism evolves from being dominated by vehicular transport at low hydration and sulfonation levels to including a significant contribution from the Grötthuss mechanism (also known as structural diffusion) at higher hydration and sulfonation levels. The observed increase in conductivity reflects the impact that changing hydration and sulfonation have on the morphology and hydrogen bond network and ultimately on the membrane performance.

More Details

Phosphate glass matrix composites incorporating trisilanol phenyl polyhedral oligomeric silsesquioxane prepared by viscous flow sintering method with enhanced benefits

Journal of Non-Crystalline Solids

Kim, Kyoungtae; Jarrett, William L.; Alam, Todd M.; Otaigbe, Joshua U.

The effect of mixing and sintering processes to prepare tin fluorophosphate glass (Pglass) matrix composites incorporating trisilanol phenyl polyhedral oligomeric silsesquioxane (TSP-POSS) was investigated by comparing manual and suspension mixing, one-step and stepwise sintering processes to explore the structure dynamics and physical properties in the composites as a function of the different process conditions used. Energy Dispersive X-ray analysis confirmed optimal homogeneous dispersion of the TSP-POSS molecules in the composites prepared by the suspension method. The observed increase of glass transition temperature and the reduction of non-bridging bonds in the composites are believed to be the reason for the effective dispersion of TSP-POSS molecules in the composites. The chemical reaction between the TSP-POSS and Pglass was strongly influenced by the mixing/dispersion and sintering processes investigated. 13C cross polarized magic angle spinning (CP MAS) solid state nuclear magnetic resonance (NMR) spectroscopy confirmed the chemical stability of the TSP-POSS during the sintering process at elevated temperatures. In addition, a chemical reaction between the TSP-POSS and Pglass was evidenced by 29Si CP MAS NMR analysis. This study will provide a better fundamental understanding of the effective dispersion mechanism of the TSP-POSS molecules in the Pglass matrix that will facilitate tailoring the physicochemical properties of the composites with addition of various small concentrations of TSP-POSS for a number of applications where the pure Pglass is not applicable due to the intrinsic properties of the Pglass.

More Details

Hydration and Hydroxylation of MgO in Solution: NMR Identification of Proton-Containing Intermediate Phases

ACS Omega

Rimsza, Jessica R.; Sorte, Eric G.; Alam, Todd M.

Magnesium oxide (MgO)-engineered barriers used in subsurface applications will be exposed to high concentration brine environments and may form stable intermediate phases that can alter the effectiveness of the barrier. To explore the formation of these secondary intermediate phases, MgO was aged in water and three different brine solutions and characterized with X-ray diffraction (XRD) and 1H magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. After aging, there is ∼4% molar equivalent of a hydrogen-containing species formed. The 1H MAS NMR spectra resolved multiple minor phases not visible in XRD, indicating that diverse disordered proton-containing environments are present in addition to crystalline Mg(OH)2 brucite. Density functional theory (DFT) simulations for the proposed Mg-O-H-, Mg-Cl-O-H-, and Na-O-H-containing phases were performed to index resonances observed in the experimental 1H MAS NMR spectra. Although the intermediate crystal structures exhibited overlapping 1H NMR resonances in the spectra, Mg-O-H intermediates were attributed to the growth of resonances in the δ +1.0 to 0.0 ppm region, and Mg-Cl-O-H structures produced the increasing contributions of the δ = +2.5 to 5.0 ppm resonances in the chloride-containing brines. Overall, 1H NMR analysis of aged MgO indicates the formation of a wide range of possible intermediate structures that cannot be observed or resolved in the XRD analysis.

More Details

Unexpected effects of inorganic phosphate glass on crystallization and thermo-rheological behavior of polyethylene terephthalate

Polymer

Kim, Kyoungtae; Kashani Rahimi, Shahab; Alam, Todd M.; Sorte, Eric G.; Otaigbe, Joshua U.

The effects of ultra-low glass transition temperature (Tg) phosphate glass (Pglass) on the thermal, morphological, rheological, mechanical, and crystallization properties of hybrid Pglass/poly(eththylene terephthalate)(PET) were investigated. Nano- and micro-scale distribution of the Pglass in the PET polymer matrix was observed. The polydispersed Pglass in the PET matrix functioned as a nucleation agent, resulting in increasing crystallization temperature. The Pglass in the PET matrix decreased the Tg, indicating a plasticizing effect of the Pglass in the hybrids that was confirmed by the significantly decreased complex viscosity of the PET matrix. In addition, with increasing temperature, a non-terminal behavior of the viscoelastic properties occurred due to the hybrid structural changes and improved miscibility of the hybrid components. Further, the obtained solid-state variable temperature 31P and 1H NMR spectroscopy results showed strong Pglass concentration dependency of the interactions at the PET-Pglass interface.

More Details

In Situ Stripline Electrochemical NMR for Batteries

ChemElectroChem

Sorte, Eric G.; Banek, Nathan A.; Wagner, Michael J.; Alam, Todd M.; Tong, Yu Y.

Some long-outstanding technical challenges exist that continue to be of hindrance to fully harnessing the unique investigative advantages of nuclear magnetic resonance (NMR) spectroscopy in the in situ investigation of rechargeable battery chemistry. For instance, the conducting materials and circuitry necessary for an operational battery always deteriorate the coil-based NMR sensitivity when placed inside the coil, and the shape mismatch between them leads to low sample filling factors and even higher detection limits. We report, herein, a novel and successful adaptation of stripline NMR detection that integrates seamlessly NMR detection with the construction of an electrochemical device in general, or a battery in particular, which leads to an in situ electrochemical NMR technique with much higher detection sensitivity, higher sample filling factor, and which is particularly suitable for mass-limited samples.

More Details

Resolving Confined 7Li Dynamics of Uranyl Peroxide Capsule U24

Inorganic Chemistry

Xie, Jing; Neal, Harrison A.; Szymanowski, Jennifer; Burns, Peter C.; Alam, Todd M.; Nyman, May; Gagliardi, Laura

We obtained a kerosene-soluble form of the lithium salt [UO2(O2)(OH)2]24 phase (Li-U24), by adding cetyltrimethylammonium bromide surfactant to aqueous Li-U24. Interestingly, its variable-temperature solution 7Li NMR spectroscopy resolves two narrowly spaced resonances down to -10 °C, which shift upfield with increasing temperature, and finally coalesce at temperatures > 85 °C. Comparison with solid-state NMR demonstrates that the Li dynamics in the Li-U24-CTA phase involves only exchange between different local encapsulated environments. This behavior is distinct from the rapid Li exchange dynamics observed between encapsulated and external Li environments for Li-U24 in both the aqueous and the solid-state phases. Density functional theory calculations suggest that the two experimental 7Li NMR chemical shifts are due to Li cations coordinated within the square and hexagonal faces of the U24 cage, and they can undergo exchange within the confined environment, as the solution is heated. Very different than U24 in aqueous media, there is no evidence that the Li cations exit the cage, and therefore, this represents a truly confined space.

More Details

Computational Study of Microhydration in Sulfonated Diels-Alder Poly(phenylene) Polymers

Journal of Physical Chemistry A

Alam, Todd M.

The nature of microhydration in sulfonated Diels-Alder poly(phenylene) (SDAPP) polymer membranes is explored using ab initio and density functional theory (DFT) electronic structure calculations. The impact of the aromatic poly(phenylene) structure, including cooperative effects between multiple spatially adjacent sulfonic groups, on the hydration environment is addressed using a series of DFT B3LYP/6-311∗∗-optimized structures for different SDAPP·nH2O clusters. In addition, larger SDAPP polymer fragments, along with selected hydrophilic domain structures extracted from molecular dynamic (MD) simulations, are also evaluated using ONIOM HF/PM6 semiempirical calculations. The SDAPP clusters reveal that spontaneous proton dissociation occurs at low levels of hydration to form sulfonic-acid-associated H3O+ contact ion pairs (CIPs), which then evolve into solvated CIPs at higher hydration levels. For multiple sulfonic acid groups located on the poly(phenylene) side chains, the hydration energies are a function of the relative acid location and backbone configuration. Variations in the phenylene backbone torsional angles allow remote sulfonic acids to adopt an optimal separation to produce an extended hydrogen bonded network of waters between the SDAPP acids groups. These calculations provide a baseline to help describe the proton transport and hydration behavior of SDAPP membranes.

More Details

Hydrophilic domain structure in polymer exchange membranes: Simulations of NMR spin diffusion experiments to address ability for model discrimination

Journal of Polymer Science, Part B: Polymer Physics

Sorte, Eric G.; Abbott, Lauren J.; Frischknecht, Amalie F.; Wilson, Mark A.; Alam, Todd M.

We detail the development of a flexible simulation program (NMR_DIFFSIM) that solves the nuclear magnetic resonance (NMR) spin diffusion equation for arbitrary polymer architectures. The program was used to explore the proton (1H) NMR spin diffusion behavior predicted for a range of geometrical models describing polymer exchange membranes. These results were also directly compared with the NMR spin diffusion behavior predicted for more complex domain structures obtained from molecular dynamics (MD) simulations. The numerical implementation and capabilities of NMR_DIFFSIM were demonstrated by evaluating the experimental NMR spin diffusion behavior for the hydrophilic domain structure in sulfonated Diels-Alder Poly(Phenylene) (SDAPP) polymer membranes. The impact of morphology variations as a function of sulfonation and hydration level on the resulting NMR spin diffusion behavior were determined. These simulations allowed us to critically address the ability of NMR spin diffusion to discriminate between different structural models, and to highlight the extremely high fidelity experimental data required to accomplish this. A direct comparison of experimental double-quantum-filtered 1H NMR spin diffusion in SDAPP membranes to the spin diffusion behavior predicted for MD-proposed morphologies revealed excellent agreement, providing experimental support for the MD structures at low to moderate hydration levels. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 62–78.

More Details

1H-19F REDOR-filtered NMR spin diffusion measurements of domain size in heterogeneous polymers

Magnetic Resonance in Chemistry

Sorte, Eric G.; Alam, Todd M.

Solid state NMR spectroscopy is inherently sensitive to chemical structure and composition and thus makes an ideal method to probe the heterogeneity of multicomponent polymers. Specifically, NMR spin diffusion experiments can be used to extract reliable information about spatial domain sizes on multiple length scales, provided that magnetization selection of one domain can be achieved. In this paper, we demonstrate the preferential filtering of protons in fluorinated domains during NMR spin diffusion experiments using 1H-19F heteronuclear dipolar dephasing based on rotational echo double resonance (REDOR) MAS NMR techniques. Three pulse sequence variations are demonstrated based on the different nuclei detected: direct 1H detection, plus both 1H➔13C cross polarization and 1H➔19F cross polarization detection schemes. This 1H-19F REDOR-filtered spin diffusion method was used to measure fluorinated domain sizes for a complex polymer blend. The efficacy of the REDOR-based spin filter does not rely on spin relaxation behavior or chemical shift differences and thus is applicable for performing NMR spin diffusion experiments in samples where traditional magnetization filters may prove unsuccessful. This REDOR-filtered NMR spin diffusion method can also be extended to other samples where a heteronuclear spin pair exists that is unique to the domain of interest.

More Details

Fluxional Monomers for Enhanced Thermoset Materials

Jones, Brad H.; Alam, Todd M.; Black, Hayden B.; Celina, Mathias C.; Wheeler, David R.

This report catalogues the results of a project exploring the incorporation of organometallic compounds into thermosetting polymers as a means to reduce their residual stress. Various syntheses of polymerizable ferro cene derivatives were attempted with mixed success. Ultimately, a diamine derivative of ferrocene was used as a curing agen t for a commercial epoxy resin, where it was found to give similar cure kinetics and mechanical properties in comparison to conventional curing agents. T he ferrocen e - based material is uniquely able to relax stress above the glass transition, leading to reduced cure stress. We propose that this behavior arises from the fluxional capacity of ferrocene. In support of this notion, nuclear magnetic resonance spectroscopy indicates a substantial increase in chain flexibility in the ferrocene - containing network. Although t he utilization of fluxionality is a novel approach to stress management in epoxy thermosets, it is anticipated to have greater impact in radical - cured ther mosets and linear polymers.

More Details

Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent

Macromolecules

Jones, Brad H.; Wheeler, David R.; Black, Hayden T.; Stavig, Mark E.; Sawyer, P.S.; Giron, Nicholas H.; Celina, Mathias C.; Lambert, Timothy N.; Alam, Todd M.

Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. Here, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into the backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. We postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.

More Details

Synthesis and characterization of novel phosphate glass matrix nanocomposites containing polyhedral oligomeric silsesquioxane with improved properties

Journal of Non-Crystalline Solids

Kim, Kyoungtae; Alam, Todd M.; Lichtenhan, Joseph D.; Otaigbe, Joshua U.

The preparation and characterization of novel tin fluorophosphate glass (Pglass) matrix nanocomposite materials containing nanoscale trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) prepared via classical glass synthesis was investigated to accelerate efforts to develop novel hybrid Pglass/POSS nanocomposites with enhanced benefits in suitable diverse applications. The glass transition temperatures (Tg) of the obtained nanocomposites ranged from 121.6° to 147.6 °C to an extent that depends on the nano-POSS concentrations (≤ 10 wt% POSS) in the nanocomposites. The obtained scanning electron microscopy with energy-dispersive x-ray spectroscopy and atomic force microscopy results confirmed the homogeneous molecular level dispersion of the POSS cages in the continuous Pglass matrix of the nanocomposite. Chemical reaction (or bonding) between the constituents of the nanocomposites was confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and nuclear magnetic resonance spectroscopy. The rheological (storage and loss modulus) and nanomechanical (elastic modulus) properties of the nanocomposites significantly improved with increasing nano-POSS concentrations up to 10 wt% POSS. The molecular dispersion of the POSS and its strong physicochemical interaction with the continuous Pglass matrix can be tailored to satisfy requirements of a number of optomechanical applications where the pure glass is not useable.

More Details

In situ nucleophilic substitutional growth of methylammonium lead iodide polycrystals

Nature Chemistry

Alam, Todd M.; Acik, Muge A.; Guo, Fangmin G.; Ren, Yang R.; Lee, Byeongdu L.; Mitchell, JF M.; Kinaci, Alper K.; Chan, Maria C.; Darling, Seth B.

Methylammonium lead iodide (MAPbIx) perovskites are organic-inorganic semiconductors that serve as the light-harvesting component of the photovoltaics, and are desirable with their long diffusion length yielding power conversion efficiencies of ≥22%. Conventional techniques grow perovskites by spin coating precursors on an oxide or a polymer substrate followed by annealing, however, use of high boiling point solvents and high temperatures hinder device stability and performance. Through a one-step, acid-catalyzed nucleophilic-substitutional crystal growth in polar protic solvents, we show evidence for the substrate- and annealing- free production of MAPbIx polycrystals that are metallic-lead-free with negligibly small amount of PbI2 precipitation (<10%). On the basis of this chemical composition, we have devised an in situ growth of highly air (upto ~1.5 months) and thermally-stable (≤300°C), tetragonal-phased, variable-sized polycrystals (~100 nm-10 μm) amendable for large-area deposition, and ultimately, large-scale manufacturing. This method is encouraging for stable optoelectronic devices, and leads to energy-efficient and low-cost processing.

More Details

Pt–Mg, Pt–Ca, and Pt–Zn lantern complexes and metal-only donor–acceptor interactions [Pt-Mg Pt-Ca and Pt-Zn compounds with metal-only donor-acceptor interactions]

Inorganic Chemistry

Alam, Todd M.; Baddour, Frederick G.; Hyre, Ariel S.; Guillet, Jesse L.; Pascual, David P.; Lopez-de-Luzuriaga, José M.; Bacon, Jeffrey W.; Doerrera, Linda H.

Here, Pt-based heterobimetallic lantern complexes of the form [PtM(SOCR)4(L)] have been shown previously to form intermolecular metallophilic interactions and engage in antiferromagnetic coupling between lanterns having M atoms with open shell configurations. In order to understand better the influence of the carboxylate bridge and terminal ligand on the electronic structure, as well as the metal–metal interactions within each lantern unit, a series of diamagnetic lantern complexes, [PtMg(SAc)4(OH2)] (1), [PtMg(tba)4(OH2)] (2), [PtCa(tba)4(OH2)] (3), [PtZn(tba)4(OH2)] (4), and a mononuclear control (Ph4P)2[Pt(SAc)4] (5) have been synthesized. Crystallographic data show close Pt–M contacts enforced by the lantern structure in each dinuclear case. 195Pt-NMR spectroscopy of 1–4, (Ph4P)2[Pt(SAc)4] (5), and several previously reported lanterns revealed a strong chemical shift dependence on the identity of the second metal (M), mild influence by the thiocarboxylate ligand (SOCR; R = CH3 (thioacetate, SAc), C6H5 (thiobenzoate, tba)), and modest influence from the terminal ligand (L). Fluorescence spectroscopy has provided evidence for a Pt···Zn metallophilic interaction in [PtZn(SAc)4(OH2)], and computational studies demonstrate significant dative character. In all of 1–4, the short Pt–M distances suggest that metal-only Lewis donor (Pt)–Lewis acceptor (M) interactions could be present. DFT and NBO calculations, however, show that only the Zn examples have appreciable covalent character, whereas the Mg and Ca complexes are much more ionic.

More Details

Improved Mechanical Performance Fracture Properties and Reliability of Radical-Cured Thermosets

Redline, Erica M.; Bolintineanu, Dan S.; Lane, James M.; Stevens, Mark J.; Alam, Todd M.; Celina, Mathias C.

The aim of this study was to alter polymerization chemistry to improve network homogeneity in free-radical crosslinked systems. It was hypothesized that a reduction in heterogeneity of the network would lead to improved mechanical performance. Experiments and simulations were carried out to investigate the connection between polymerization chemistry, network structure and mechanical properties. Experiments were conducted on two different monomer systems - the first is a single monomer system, urethane dimethacrylate (UDMA), and the second is a two-monomer system consisting of bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) in a ratio of 70/30 BisGMA/TEGDMA by weight. The methacrylate systems were crosslinked using traditional radical polymeriza- tion (TRP) with azobisisobutyronitrile (AIBN) or benzoyl peroxide (BPO) as an initiator; TRP systems were used as the control. The monomers were also cross-linked using activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) as a type of controlled radical polymerization (CRP). FTIR and DSC were used to monitor reac- tion kinetics of the systems. The networks were analyzed using NMR, DSC, X-ray diffraction (XRD), atomic force microscopy (AFM), and small angle X-ray scattering (SAXS). These techniques were employed in an attempt to quantify differences between the traditional and controlled radical polymerizations. While a quantitative methodology for characterizing net- work morphology was not established, SAXS and AFM have shown some promising initial results. Additionally, differences in mechanical behavior were observed between traditional and controlled radical polymerized thermosets in the BisGMA/TEGDMA system but not in the UDMA materials; this finding may be the result of network ductility variations between the two materials. Coarse-grained molecular dynamics simulations employing a novel model of the CRP reaction were carried out for the UDMA system, with parameters calibrated based on fully atomistic simulations of the UDMA monomer in the liquid state. Detailed metrics based on network graph theoretical approaches were implemented to quantify the bond network topology resulting from simulations. For a broad range of polymerization parameters, no discernible differences were seen between TRP and CRP UDMA simulations at equal conversions, although clear differences exist as a function of conversion. Both findings are consistent with experiments. Despite a number of shortcomings, these models have demonstrated the potential of molecular simulations for studying network topology in these systems.

More Details

In-pore exchange and diffusion of carbonate solvent mixtures in nanoporous carbon

Chemical Physics Letters

Alam, Todd M.; Osborn Popp, Thomas M.

High resolution magic angle spinning (HRMAS) 1H NMR spectroscopy has been used to resolve different surface and in-pore solvent environments of ethylene carbonate (EC) and dimethyl carbonate (DMC) mixtures absorbed within nanoporous carbon (NPC). Two dimensional (2D) 1H HRMAS NMR exchange measurements revealed that the inhomogeneous broadened in-pore resonances have pore-to-pore exchange rates on the millisecond timescale. Pulsed-field gradient (PFG) NMR diffusometry revealed the in-pore self-diffusion constants for both EC and DMC were reduced by up to a factor of five with respect to the diffusion in the non-absorbed solvent mixtures.

More Details

Sub-Equimolar Hydrolysis and Condensation of Organophosphates

ChemistrySelect

Alam, Todd M.; Kinnan, Mark K.; Wilson, Brendan W.; Wheeler, David R.

The in-situ hydrolysis and subsequent condensation reaction of the chemical agent simulant diethyl chlorophosphate (DECP) was characterized by high-resolution 31P NMR spectroscopy following the addition of water in sub-equimolar concentrations. The identification and quantification of the multiple pyrophosphate and larger polyphosphate chemical species formed through a series of self-condensation reactions are reported. The DECP hydrolysis kinetics and distribution of breakdown species was strongly influenced by the water concentration and reaction temperature.

More Details

Insight into hydrogen bonding of uranyl hydroxide layers and capsules by use of 1H magic-angle spinning NMR spectroscopy

Journal of Physical Chemistry C

Alam, Todd M.; Liao, Zuolei; Nyman, May; Yates, Jonathan

Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO2(OH)2] (α-UOH) and hydrated uranyl hydroxide [(UO2)4O(OH)6.5H2O (metaschoepite). For the metaschoepite material, proton resonances of the μ2-OH hydroxyl and interlayer waters were resolved, with twodimensional (2D) double-quantum (DQ) 1H-1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogenbond strength and observed 1H NMR chemical shifts. These NMR correlations allowed characterization of local hydrogenbond environments in uranyl U24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.

More Details

Structural Properties of the Acidification Products of Scandium Hydroxy Chloride Hydrate

Inorganic Chemistry

Boyle, Timothy J.; Sears, Jeremiah M.; Neville, Michael L.; Alam, Todd M.; Young, Victor G.

The structural properties of a series of scandium inorganic acid derivatives were determined. The reaction of Sc0 with concentrated aqueous hydrochloric acid led to the isolation of [(H2O)5Sc(Μ-OH)]24Cl·2H2O (1). Compound 1 was modified with a series of inorganic acids (i.e., HNO3, H3PO4, and H2SO4) at room temperature and found to form {[(H2O)4Sc(k2-NO3)(Μ-OH)]NO3}2 (2a), [(H2O)4Sc(k2-NO3)2]NO3·H2O (2b) (at reflux temperatures), {6[H][Sc(Μ-PO4)(PO4)]6}n (3), and [H][Sc(Μ3-SO4)2]·2H2O (4a). Additional organosulfonic acid derivatives were investigated, including tosylic acid (H-OTs) to yield {[(H2O)4Sc(OTs)2]OTs}·2H2O (4b) in H2O and [(DMSO)3Sc(OTs)3] (4c) in dimethyl sulfoxide and triflic acid (H-OTf) to form [Sc(H2O)8]OTf3 (4d). Other organic acid modifications of 1 were also investigated, and the final structures were determined to be {([(H2O)2Sc(Μ-OAc)2]Cl)6}n (5) from acetic acid (H-OAc) and [Sc(Μ-TFA)3Sc(Μ-TFA)3]n (6) from trifluoroacetic acid (H-TFA). In addition to single-crystal X-ray structures, the compounds were identified by solid-state and solution-state 45Sc nuclear magnetic resonance spectroscopic studies.

More Details

Isomer-sensitive deboronation in reductive aminations of aryl boronic acids

Tetrahedron Letters

Jones, Brad H.; Wheeler, David R.; Wheeler, Jill S.; Miller, Lance L.; Alam, Todd M.; Spoerke, Erik D.

Deboronation is observed during the reductive amination of formylphenylboronic acid (FPBA) to the amine termini and side chains of peptides. This deboronation is sensitive to the isomerism of the boronic acid (BA), with ortho-FPBA yielding complete deboronation in the preparation of an N-terminally-modified dipeptide. The observed behavior is also clearly mediated by the chemical identity of the amine substrate. These results reveal a previously undocumented subtlety of BA functionalization and highlight the importance of thorough spectroscopic characterization in the preparation of peptide and small molecule BAs.

More Details

Resolving and measuring diffusion in complex interfaces: Exploring new capabilities

Alam, Todd M.

This exploratory LDRD targeted the use of a new high resolution spectroscopic diffusion capabilities developed at Sandia to resolve transport processes at interfaces in heterogeneous polymer materials. In particular, the combination of high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy with pulsed field gradient (PFG) diffusion experiments were used to directly explore interface diffusion within heterogeneous polymer composites, including measuring diffusion for individual chemical species in multi-component mixtures. Several different types of heterogeneous polymer systems were studied using these HRMAS NMR diffusion capabilities to probe the resolution limitations, determine the spatial length scales involved, and explore the general applicability to specific heterogeneous systems. The investigations pursued included a) the direct measurement of the diffusion for poly(dimethyl siloxane) polymer (PDMS) on nano-porous materials, b) measurement of penetrant diffusion in additive manufactures (3D printed) processed PDMS composites, and c) the measurement of diffusion in swollen polymers/penetrant mixtures within nano-confined aluminum oxide membranes. The NMR diffusion results obtained were encouraging and allowed for an improved understanding of diffusion and transport processes at the molecular level, while at the same time demonstrating that the spatial heterogeneity that can be resolved using HRMAS NMR PFG diffusion experiment must be larger than ~μm length scales, expect for polymer transport within nanoporous carbons where additional chemical resolution improves the resolvable heterogeneous length scale to hundreds of nm.

More Details

Investigating the Hydrolysis Reactions of a Chemical Warfare Agent Surrogate. A Systematic Study using 1H, 13C, 17O, 19F, 31P, and 35Cl NMR Spectroscopy

Alam, Todd M.

During the summer of 2015, I participated in the DHS HS-STEM fellowship at Sandia National Laboratories (SNL, NM) under the supervision of Dr. Todd M. Alam in his Nuclear Magnetic Resonance (NMR) Spectroscopy research group. While with the group, my main project involved pursing various hydrolysis reactions with Diethyl Chlorophosphate (DECP), a surrogate for the agent Sarin (GB). Specifically, I performed different hydrolysis reactions, monitored and tracked the different phosphorous containing species using phosphorous (31P) NMR spectroscopy. With the data collected, I performed kinetics studies mapping the rates of DECP hydrolysis. I also used the NMR of different nuclei such as 1H, 13C, 17O, and 35Cl to help understand the complexity of the reactions that take place. Finally, my last task at SNL was to work with Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) NMR Spectroscopy optimizing conditions for 19F- 31P filtering NMR experiments.

More Details

Infrared signature of micro-hydration in the organophosphate Sarin: an ab initio study

Journal of Molecular Modeling

Alam, Todd M.; Pearce, Charles J.

The infrared (IR) spectra of micro-hydrated Sarin•(H2O)n clusters containing between one and four explicit waters have been studied using ab initio density functional theory (DFT) methods. The phosphate group P=O bond vibration region (∼1270 to 1290 cm−1) revealed the largest frequency variation with hydration, with a frequency red shift reflecting the direct hydrogen bond formation between the P=O of Sarin and water. Small variations to the P-F stretch (∼810 to 815 cm−1) and the C-O-P vibrational modes (∼995 to 1004 cm−1) showed that the water interactions with these functional groups were minor, and that the structures of Sarin were not extensively perturbed in the hydrated complexes. Increasing the number of explicit hydration waters produced only small vibrational changes in the lowest free energy complexes. These minor changes were consistent with a single water-phosphate hydrogen bond being the dominant structure, though a second water-phosphate hydrogen bond was observed in some complexes and was identified by an additional red shift of the P=O bond vibration. The H2O•H2O vibrational modes (∼3450 to 3660 cm−1) increased in complexity with higher hydration levels and reflect the extended hydrogen bonding networks formed between the explicit waters in the hydrated Sarin clusters. [Figure not available: see fulltext.]

More Details

Mechanically-induced degradation of metallic sliding electrical contacts in silicone fluid at room temperature

Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts

Dugger, Michael T.; Groysman, D.; Celina, Mathias C.; Alam, Todd M.; Argibay, Nicolas A.; Nation, Brendan L.; Prasad, Somuri V.

The degradation in electrical contact resistance of a contact pair sliding while submerged in silicone fluid has been investigated. While the contamination of electrical contacts by silicone vapors or migrating species at elevated temperature due to decomposition in electric arcs is well known, the present degradation mechanism appears to arise from chemical reactions in the silicone fluid at room temperature, catalyzed by the presence of the freshly-abraded metal surface. As a result of these reactions, a deposit containing Si, C and O forms in the vicinity of mechanical contact. The specific contact metals present and the availability of dissolved oxygen in the fluid have a dramatic influence on the quantity of reaction product formed. The chemistry of the deposit, proposed formation mechanisms, the impact on electrical contact resistance and mitigation strategies are discussed.

More Details

Exploring the role of phosphate structural distortions on the sodium jump dynamics in NASICON phases

Materials Research Society Symposium Proceedings

Alam, Todd M.; Bell, Nelson S.; Wheeler, Jill; Spoerke, Erik D.; Cygan, Randall T.; Ingersoll, David I.

High temperature solid state sodium (23Na) magic angle spinning (MAS) NMR spin lattice relaxation times (T1) were evaluated for a series of NASICON (Na3Zr2PS12O12) materials to directly determine Na jump rates. Simulations of the Ti temperature variations that incorporated distributions in Na jump activation energies, or distribution of jump rates, improved the agreement with experiment. The 23Na NMR T1 relaxation results revealed that distributions in the Na dynamics were present for all of the NASICON materials investigated here. The 23Na relaxation experiments also showed that small differences in material composition and/or changes in the processing conditions impacted the distributions in the Na dynamics. The extent of the distribution was related to the presence of a disordered or glassy phosphate phase present in these different sol-gel processed materials. The 23Na NMR T1 relaxation experiments are a powerful tool to directly probing Na jump dynamics and provide additional molecular level details that could impact transport phenomena.

More Details

Characterization of free, restricted, and entrapped water environments in poly(N-isopropyl acrylamide) hydrogels via 1H HRMAS PFG NMR spectroscopy

Journal of Polymer Science, Part B: Polymer Physics

Alam, Todd M.; Childress, Kimberly K.; Pastoor, Vevin; Rice, Charles V.

Different water environments in poly(N-isopropyl acrylamide) (PNIPAAm) hydrogels are identified and characterized using 1H high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR). Local water environments corresponding to a "free" highly mobile species, along with waters showing restricted dynamics are resolved in these swollen hydro-gels. For photo-initiated polymerized PNIPAAm gels, an additional entrapped water species is observed. Spin-spin R2 relaxation experiments support the argument of reduced mobility in the restricted and entrapped water species. By combining pulse field gradient techniques with HRMAS NMR it is possible to directly measure the self-diffusion rate for these different water environments. The behavior of the heterogeneous water environments through the lower critical solution temperature transition is described.

More Details

Development and Investigation of NMR tools for chiral compound identification

Alam, Todd M.; Dernov, Vitaliy D.

The goal behind the assigned summer project was to investigate the ability of nuclear magnetic resonance spectroscopy (NMR) to identify enantiomers of select chiral organo-fluorophosphates (OFPs) compounds which are analogs of chemical warfare agents (CWAs, e.g. Sarin). This involved investigations utilizing chiral solvating agents (CSAs) and characterizing the binding phenomena with cyclodextrins. The resolution of OFPs enantiomers using NMR would be useful for research into toxicodynamics and toxicokinetics in biological systems due to the widely differing properties of the CWA enantiomers [1]. The optimization of decontamination abilities in the case of a CWA events, with this method’s potential rapidity and robustness, as well as the development of models correlating chiral compounds with CSAs for optimal resolution are all rational benefits of this research.

More Details

Development of alkaline fuel cells

Alam, Todd M.

This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

More Details

Ab Initio Calculations of Possible γ-Gauche Effects in the 13C-NMR for Methine and Carbonyl Carbons in Precise Polyethylene Acrylic Acid Copolymers

Molecules

Alam, Todd M.

The impacts of local polymer chain conformations on the methine and carbonyl 13C-NMR chemical shifts for polyethylene acrylic acid p(E-AA) copolymers were predicted using ab initio methods. Using small molecular cluster models, the magnitude and sign of the γ-gauche torsional angle effect, along with the impact of local tetrahedral structure distortions near the carbonyl group, on the 13C-NMR chemical shifts were determined. These 13C-NMR chemical shift variations were compared to the experimental trends observed for precise p(E-AA) copolymers as a function acid group spacing and degree of zinc-neutralization in the corresponding p(E-AA) ionomers. These ab initio calculations address the future ability of 13C-NMR chemical shift variations to provide information about the local chain conformations in p(E-AA) copolymer materials.

More Details

Enhanced Micellar Catalysis LDRD

Betty, Rita B.; Glen, Crystal C.; Alam, Todd M.; Taggart, Gretchen S.; Tucker, Mark D.; Rivera, Danielle R.; Kinnan, Mark K.

The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesotas Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

More Details

Development of a micro flow-through cell for high field NMR spectroscopy

Alam, Todd M.; McIntyre, Sarah K.

A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

More Details

Metabonomics for detection of nuclear materials processing

Alam, Todd M.; Alam, Mary K.

Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

More Details

Tracking of Nuclear Production using Indigenous Species: Final LDRD Report

Alam, Todd M.; Alam, Mary K.

Our LDRD research project sought to develop an analytical method for detection of chemicals used in nuclear materials processing. Our approach is distinctly different than current research involving hardware-based sensors. By utilizing the response of indigenous species of plants and/or animals surrounding (or within) a nuclear processing facility, we propose tracking 'suspicious molecules' relevant to nuclear materials processing. As proof of concept, we have examined TBP, tributylphosphate, used in uranium enrichment as well as plutonium extraction from spent nuclear fuels. We will compare TBP to the TPP (triphenylphosphate) analog to determine the uniqueness of the metabonomic response. We show that there is a unique metabonomic response within our animal model to TBP. The TBP signature can further be delineated from that of TPP. We have also developed unique methods of instrumental transfer for metabonomic data sets.

More Details

Exploiting interfacial water properties for desalination and purification applications

Cygan, Randall T.; Jiang, Ying B.; Alam, Todd M.; Brinker, C.J.; Bunker, B.C.; Leung, Kevin L.; Nenoff, T.M.; Nyman, M.; Ockwig, Nathan O.; Orendorff, Christopher O.; Rempe, Susan R.; Singh, Seema S.; Criscenti, Louise C.; Stevens, Mark J.; Thurmer, Konrad T.; Van Swol, Frank; Varma, Sameer V.; Crozier, Paul C.; Feibelman, Peter J.; Houston, Jack E.; Huber, Dale L.

A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

More Details

Cupric siliconiobate. Synthesis and solid-state studies of a pseudosandwich-type heteropolyanion

Inorganic Chemistry

Anderson, Travis M.; Alam, Todd M.; Rodriguez, Marko A.; Bixler, Joel N.; Xu, Wenqian; Parise, John B.; Nyman, M.

The Na+ and [Cu(en)2(H2O) 2]2+ (en = ethylenediamine) salt of a pseudosandwich-type heteropolyniobate forms upon prolonged heating of Cu(NO3)2 and hydrated Na14[(SiOH)2Si2Nb 16O54] in a mixed water-en solution. The structure [a = 14.992(2) Å, b = 25.426(4) Å, c = 30.046(4) Å, orthorhombic, Pnn2, R1 = 6.04%, based on 25869 unique reflections] consists of two [Na(SiOH)2Si2Nb16O54]13- units linked by six sodium cations, and this sandwich is charge-balanced by five [Cu(en)2(H2O)2]2+ complexes, seven protons, and three additional sodium atoms (all per a sandwich-type cluster). Diffuse-reflectance UV-vis indicates that there is a λmax at 383 nm for the CuII d-d transition and the 29Si MAS NMR spectrum has two peaks at -78.2 ppm (151 Hz) and -75.5 ppm (257 Hz) for the two pairs of symmetry-equivalent internal [SiO4]4- and external [SiO3(OH)]3- tetrahedra, respectively. Unlike tungsten-based sandwich-type complexes, the [Na(SiOH)2Si 2Nb16O54]13- units are linked exclusively by Na+ instead of one or more d-electron metals. © 2008 American Chemical Society.

More Details

Probing water dynamics in octahedral molecular sieves: High speed 1H MAS NMR investigations

Materials Research Society Symposium Proceedings

Alam, Todd M.; Pless, Jason; Nenoff, T.M.

The water dynamics in a series of Sandia octahedral molecular sieves (SOMS) were investigated using high speed 1H magic angle spinning (MAS) NMR spectroscopy. For these materials both the 20% Ti-substituted material, Na 2Nb1.6Ti0.4(OH)0.4O 5.6·H2O and the 0% exchanged end member, Na 2Nb2O6·H2O were studied. By combining direct one dimensional (1D) MAS NMR experiments with double quantum (DQ) filtered MAS NMR experiments different water environments within the materials were identified based on differences in mobility. Two dimensional (2D) DQ correlation experiments were used to extract the DQ spinning sideband patterns allowing the residual 1H-1H homonuclear dipolar coupling to be measured. From these DQ experiments the effective order parameters for the different water environments were calculated. The water environments in the two different SOMS compositions investigated revealed very large differences in the water mobility. © 2007 Materials Research Society.

More Details

Tools for characterizing biomembranes : final LDRD report

Alam, Todd M.; McIntyre, Sarah K.; Stevens, Mark J.

A suite of experimental nuclear magnetic resonance (NMR) spectroscopy tools were developed to investigate lipid structure and dynamics in model membrane systems. By utilizing both multinuclear and multidimensional NMR experiments a range of different intra- and inter-molecular contacts were probed within the membranes. Examples on pure single component lipid membranes and on the canonical raft forming mixture of DOPC/SM/Chol are presented. A unique gel phase pretransition in SM was also identified and characterized using these NMR techniques. In addition molecular dynamics into the hydrogen bonding network unique to sphingomyelin containing membranes were evaluated as a function of temperature, and are discussed.

More Details

An aqueous route to [Ta6O19]8- and solid-state studies of isostructural niobium and tantalum oxide complexes

Anderson, Travis M.; Alam, Todd M.; Rodriguez, Marko A.

Tantalate materials play a vital role in our high technology society: tantalum capacitors are found in virtually every cell phone. Furthermore, electronic characteristics and the incredibly inert nature of tantalates renders them ideal for applications such as biomedical implants, nuclear waste forms, ferroelectrics, piezoelectrics, photocatalysts and optical coatings. The inert and insoluble nature of tantalates is not fundamentally understood; and furthermore poor solubility renders fabrication of novel or optimized tantalates very difficult. We have developed a soft chemical route to water-soluble tantalum oxide clusters that can serve as both precursors for novel tantalate materials and ideal models for experimental and computational approaches to understanding the unusually inert behavior of tantalates. The water soluble cluster, [Ta6O19]8- is small, highly symmetric, and contains the representative oxygen types of a metal oxide surface, and thus ideally mimics a complex tantalate surface in a simplistic form that can be studied unambiguously. Furthermore; in aqueous solution, these highly charged and super-basic clusters orchestrate surprising acid-base behavior that most likely plays an important role in the inertness of related oxide surfaces. Our unique synthetic approach to the [Ta6O19]8- cluster allowed for unprecedented enrichment with isotopic labels (17O), enabling detailed kinetic and mechanistic studies of the behavior of cluster oxygens, as well as their acid-base behavior. This SAND report is a collection of two publications that resulted from these efforts.

More Details

Fuel traps: mapping stability via water association

Sabo, Dubravko S.; Greathouse, Jeffery A.; Leung, Kevin L.; Cygan, Randall T.; Alam, Todd M.; Varma, Sameer V.; Martin, Marcus G.

Hydrogen storage is a key enabling technology required for attaining a hydrogen-based economy. Fundamental research can reveal the underlying principles controlling hydrogen uptake and release by storage materials, and also aid in characterizing and designing novel storage materials. New ideas for hydrogen storage materials come from exploiting the properties of hydrophobic hydration, which refers to water s ability to stabilize, by its mode of association, specific structures under specific conditions. Although hydrogen was always considered too small to support the formation of solid clathrate hydrate structures, exciting new experiments show that water traps hydrogen molecules at conditions of low temperatures and moderate pressures. Hydrogen release is accomplished by simple warming. While these experiments lend credibility to the idea that water could form an environmentally attractive alternative storage compound for hydrogen fuel, which would advance our nation s goals of attaining a hydrogen-based economy, much work is yet required to understand and realize the full potential of clathrate hydrates for hydrogen storage. Here we undertake theoretical studies of hydrogen in water to establish a firm foundation for predictive work on clathrate hydrate H{sub 2} storage capabilities. Using molecular simulation and statistical mechanical theories based in part on quantum mechanical descriptions of molecular interactions, we characterize the interactions between hydrogen and liquid water in terms of structural and thermodynamic properties. In the process we validate classical force field models of hydrogen in water and discover new features of hydrophobic hydration that impact problems in both energy technology and biology. Finally, we predict hydrogen occupancy in the small and large cages of hydrogen clathrate hydrates, a property unresolved by previous experimental and theoretical work.

More Details

Bioagent detection using miniaturized NMR and nanoparticle amplification : final LDRD report

Alam, Todd M.; Adams, David P.; Williams, John D.; Fan, Hongyou F.

This LDRD program was directed towards the development of a portable micro-nuclear magnetic resonance ({micro}-NMR) spectrometer for the detection of bioagents via induced amplification of solvent relaxation based on superparamagnetic nanoparticles. The first component of this research was the fabrication and testing of two different micro-coil ({micro}-coil) platforms: namely a planar spiral NMR {micro}-coil and a cylindrical solenoid NMR {micro}-coil. These fabrication techniques are described along with the testing of the NMR performance for the individual coils. The NMR relaxivity for a series of water soluble FeMn oxide nanoparticles was also determined to explore the influence of the nanoparticle size on the observed NMR relaxation properties. In addition, The use of commercially produced superparamagnetic iron oxide nanoparticles (SPIONs) for amplification via NMR based relaxation mechanisms was also demonstrated, with the lower detection limit in number of SPIONs per nanoliter (nL) being determined.

More Details

Bio micro fuel cell grand challenge final report

Apblett, Christopher A.; Novak, James L.; Hudgens, James J.; Podgorski, Jason R.; Brozik, Susan M.; Flemming, Jeb H.; Ingersoll, David I.; Eisenbies, Stephen E.; Shul, Randy J.; Cornelius, Christopher J.; Fujimoto, Cy F.; Schubert, William K.; Hickner, Michael A.; Volponi, Joanne V.; Kelley, Michael J.; Zavadil, Kevin R.; Staiger, Chad S.; Dolan, Patricia L.; Harper, Jason C.; Doughty, Daniel H.; Casalnuovo, Stephen A.; Kelley, John B.; Simmons, Blake S.; Borek, Theodore T.; Meserole, Stephen M.; Alam, Todd M.; Cherry, Brian B.; Roberts, Greg

Abstract not provided.

Results 1–200 of 231
Results 1–200 of 231