Optical anticounterfeiting tags utilize the photoluminescent properties of materials to encode unique patterns, enabling identification and validation of important items and assets. These tags must combine optical complexity with ease of production and authentication to both prevent counterfeiting and to remain practical for widespread use. Metal-organic frameworks (MOFs) based on polynuclear, rare earth clusters are ideal materials platforms for this purpose, combining fine control over structure and composition, with tunable, complex energy transfer mechanisms via both linker and metal components. Here we report the design and synthesis of a set of heterometallic MOFs based on combinations of Eu, Nd, and Yb with the tetratopic linker 1,3,6,8-tetrakis(4-carboxyphenyl)pyrene. The energetics of this linker facilitate the intentional concealment of the visible emissions from Eu while retaining the infrared emissions of Nd and Yb, creating an optical tag with multiple covert elements. Unique to the materials system reported herein, we document the occurrence of a previously not observed 11-metal cluster correlated with the presence of Yb in the MOFs, coexisting with a commonly encountered 9-metal cluster. We demonstrate the utility of these materials as intricate optical tags with both rapid and in-depth screening techniques, utilizing orthogonal identifiers across composition, emission spectra, and emission decay dynamics. This work highlights the important effect of linker selection in controlling the resulting photoluminescent properties in MOFs and opens an avenue for the targeted design of highly complex, multifunctional optical tags.
Understanding the fundamental mechanisms underpinning shock initiation is critical to predicting energetic material (EM) safety and performance. Currently, the timescales and pathways by which shock-excited lattice modes transfer energy into specific chemical bonds remains an open question. Towards understanding these mechanisms, our group has previously measured the vibrational energy transfer (VET) pathways in several energetic thin films using broadband, femtosecond transient absorption spectroscopy. However, new technologies are needed to move beyond these thin film surrogates and measure broadband VET pathways in realistic EM morphologies. Herein, we describe a new broadband, femtosecond, attenuated total reflectance spectroscopy apparatus. Performance of the system is benchmarked against published data and the first VET results from a pressed EM pellet are presented. This technology enables fundamental studies of VET dynamics across sample configurations and environments (pressure, temperature, etc .) and supports the potential use of VET studies in the non-destructive surveillance of EM components.
Despite their wide use in terahertz (THz) research and technology, the application spectra of photoconductive antenna (PCA) THz detectors are severely limited due to the relatively high optical gating power requirement. This originates from poor conversion efficiency of optical gate beam photons to photocurrent in materials with subpicosecond carrier lifetimes. Here we show that using an ultra-thin (160 nm), perfectly absorbing low-temperature grown GaAs metasurface as the photoconductive channel drastically improves the efficiency of THz PCA detectors. This is achieved through perfect absorption of the gate beam in a significantly reduced photoconductive volume, enabled by the metasurface. This Letter demonstrates that sensitive THz PCA detection is possible using optical gate powers as low as 5 μW-three orders of magnitude lower than gating powers used for conventionalPCAdetectors.We show that significantly higher optical gate powers are not necessary for optimal operation, as they do not improve the sensitivity to the THz field. This class of efficient PCA THz detectors opens doors for THz applications with low gate power requirements.
Optical tags provide a way to quickly and unambiguously identify valuable assets. Current tag fluorophore options lack the tunability to allow combined methods of encoding in a single material. Herein we report a design strategy to encode multilayer complexity in a family of heterometallic rare-earth metal–organic frameworks based on highly connected nonanuclear clusters. To impart both intricacy and security, a synergistic approach was implemented resulting in both overt (visible) and covert (near-infrared, NIR) properties, with concomitant multi-emissive spectra and tunable luminescence lifetimes. Tag authentication is validated with a variety of orthogonal detection methodologies. Importantly, the effect induced by subtle compositional changes on intermetallic energy transfer, and thus on the resulting photophysical properties, is demonstrated. This strategy can be widely implemented to create a large library of highly complex, difficult-to-counterfeit optical tags.
We report experimental and numerical developments extending the operating range of vanadium dioxide based optical limiters into the short-wavelength infrared. Pixelated sensor elements have been fabricated which show optically-triggered limiting of a 2.7 µm probe.
Hydrogen lithography has been used to template phosphine-based surface chemistry to fabricate atomic-scale devices, a process we abbreviate as atomic precision advanced manufacturing (APAM). Here, we use mid-infrared variable angle spectroscopic ellipsometry (IR-VASE) to characterize single-nanometer thickness phosphorus dopant layers (δ-layers) in silicon made using APAM compatible processes. A large Drude response is directly attributable to the δ-layer and can be used for nondestructive monitoring of the condition of the APAM layer when integrating additional processing steps. The carrier density and mobility extracted from our room temperature IR-VASE measurements are consistent with cryogenic magneto-transport measurements, showing that APAM δ-layers function at room temperature. Finally, the permittivity extracted from these measurements shows that the doping in the APAM δ-layers is so large that their low-frequency in-plane response is reminiscent of a silicide. However, there is no indication of a plasma resonance, likely due to reduced dimensionality and/or low scattering lifetime.
Composition dependence of second harmonic generation, refractive index, extinction coefficient, and optical bandgap in 20 nm thick crystalline Hf1-xZrxO2 (0 ≤ x ≤ 1) thin films is reported. The refractive index exhibits a general increase with increasing ZrO2 content with all values within the range of 1.98-2.14 from 880 nm to 400 nm wavelengths. A composition dependence of the indirect optical bandgap is observed, decreasing from 5.81 eV for HfO2 to 5.17 eV for Hf0.4Zr0.6O2. The bandgap increases for compositions with x > 0.6, reaching 5.31 eV for Hf0.1Zr0.9O2. Second harmonic signals are measured for 880 nm incident light. The magnitude of the second harmonic signal scales with the magnitude of the remanant polarization in the composition series. Film compositions that display near zero remanent polarizations exhibit minimal second harmonic generation while those with maximum remanent polarization also display the largest second harmonic signal. The results are discussed in the context of ferroelectric phase assemblage in the hafnium zirconium oxide films and demonstrate a path toward a silicon-compatible integrated nonlinear optical material.
Toroidal dielectric metasurface with a Q-factor of 728 in 1500 nm wavelength are reported. The resonance couples strongly to the environment, as demonstrated with a refractometric sensing experiment.
The Lorentz-like effective medium resonance (LEMR) exhibited by the longitudinal effective permittivity of semiconductor hyperbolic metamaterials (SHMs) has been known for some time. However, direct observation of this resonance proved to be difficult. Herein, we experimentally demonstrate its existence by strongly coupling SHMs to plasmonic metasurfaces. We consider four strong coupling implementations of SHMs that exhibit different LEMR absorption profiles (both in frequency and in strength) to validate our approach.
Transparent conducting oxides, such as doped indium oxide, zinc oxide, and cadmium oxide (CdO), have recently attracted attention as tailorable materials for applications in nanophotonic and plasmonic devices such as low-loss modulators and all-optical switches due to their tunable optical properties, fast optical response, and low losses. In this work, optically induced extraordinarily large reflection changes (up to 135%) are demonstrated in bulk CdO films in the mid-infrared wavelength range close to the epsilon near zero (ENZ) point. To develop a better understanding of how doping level affects the static and dynamic optical properties of CdO, the evolution of the optical properties with yttrium (Y) doping is investigated. An increase in the metallicity and a blueshift of the ENZ point with increasing Y-concentrations is observed. Broadband all-optical switching from near-infrared to mid-infrared wavelengths is demonstrated. The major photoexcited carrier relaxation mechanisms in CdO are identified and it is shown that the relaxation times can be significantly reduced by increasing the dopant concentration in the film. This work could pave the way to practical dynamic and passive optical and plasmonic devices with doped CdO spanning wavelengths from the ultraviolet to the mid-infrared region.
High-harmonic generation (HHG) is a signature optical phenomenon of strongly driven, nonlinear optical systems. Specifically, the understanding of the HHG process in rare gases has played a key role in the development of attosecond science1. Recently, HHG has also been reported in solids, providing novel opportunities such as controlling strong-field and attosecond processes in dense optical media down to the nanoscale2. Here, we report HHG from a low-loss, indium-doped cadmium oxide thin film by leveraging the epsilon-near-zero (ENZ) effect3–8, whereby the real part of the material’s permittivity in certain spectral ranges vanishes, as well as the associated large resonant enhancement of the driving laser field. We find that ENZ-assisted harmonics exhibit a pronounced spectral redshift as well as linewidth broadening, resulting from the photo induced electron heating and the consequent time-dependent ENZ wavelength of the material. Our results provide a new platform to study strong-field and ultrafast electron dynamics in ENZ materials, reveal new degrees of freedom for spectral and temporal control of HHG, and open up the possibilities of compact solid-state attosecond light sources.
Terahertz (THz) photoconductive devices are used for generation, detection, and modulation of THz waves, and they rely on the ability to switch electrical conductivity on a subpicosecond time scale using optical pulses. However, fast and efficient conductivity switching with high contrast has been a challenge, because the majority of photoexcited charge carriers in the switch do not contribute to the photocurrent due to fast recombination. Here, we improve efficiency of electrical conductivity switching using a network of electrically connected nanoscale GaAs resonators, which form a perfectly absorbing photoconductive metasurface. We achieve perfect absorption without incorporating metallic elements, by breaking the symmetry of cubic Mie resonators. As a result, the metasurface can be switched between conductive and resistive states with extremely high contrast using an unprecedentedly low level of optical excitation. We integrate this metasurface with a THz antenna to produce an efficient photoconductive THz detector. The perfectly absorbing photoconductive metasurface opens paths for developing a wide range of efficient optoelectronic devices, where required optical and electronic properties are achieved through nanostructuring the resonator network.
We numerically analyze the role of carrier mobility in transparent conducting oxides in epsilon-near-zero phase modulators. High-mobility materials such as cadmium oxide enable compact photonic phase modulators with a modulation figure of merit >29 º/dB.
De Ceglia, Domenico; Scalora, Michael; Vincenti, Maria A.; Campione, Salvatore; Kelley, Kyle; Runnerstrom, Evan L.; Maria, Jon P.; Keeler, Gordon A.; Luk, Ting S.
Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we report experimental observation of viscoelastic nonlocalities in the infrared optical response of epsilon-near-zero nanofilms made of low-loss doped cadmium-oxide. The nonlocality is detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths. We describe the motion of conduction electrons using a hydrodynamic model for a viscoelastic fluid, and find excellent agreement with experimental results. The electrons' elasticity blue-shifts the infrared plasmonic resonance associated with the main epsilon-near-zero mode, and triggers the onset of higher-order resonances due to the excitation of electron-pressure modes above the bulk plasma frequency. We also provide evidence of the existence of nonlocal damping, i.e., viscosity, in the motion of optically-excited conduction electrons using a combination of spectroscopic ellipsometry data and predictions based on the viscoelastic hydrodynamic model.
We study semiconductor hyperbolic metamaterials (SHMs) at the quantum limit experimentally using spectroscopic ellipsometry as well as theoretically using a new microscopic theory. The theory is a combination of microscopic density matrix approach for the material response and Green’s function approach for the propagating electric field. Our approach predicts absorptivity of the full multilayer system and for the first time allows the prediction of in-plane and out-of-plane dielectric functions for every individual layer constructing the SHM as well as effective dielectric functions that can be used to describe a homogenized SHM.
In this paper, we analyze a compact silicon photonic phase modulator at 1.55 μm using epsilon-near-zero transparent conducting oxide (TCO) films. The operating principle of the non-resonant phase modulator is field-effect carrier density modulation in a thin TCO film deposited on top of a passive silicon waveguide with a CMOS-compatible fabrication process. We compare phase modulator performance using both indium oxide (In2O3) and cadmium oxide (CdO) TCO materials. Our findings show that practical phase modulation can be achieved only when using high-mobility (i.e. low-loss) epsilon-near-zero materials such as CdO. The CdO-based phase modulator has a figure of merit of 17.1°/dB in a compact 5 μm length. This figure of merit can be increased further through the proper selection of high-mobility TCOs, opening a path for device miniaturization and increased phase shifts.
Optical communication systems increasingly require electrooptical modulators that deliver high modulation speeds across a large optical bandwidth with a small device footprint and a CMOS-compatible fabrication process. Although silicon photonic modulators based on transparent conducting oxides (TCOs) have shown promise for delivering on these requirements, modulation speeds to date have been limited. Here, we describe the design, fabrication, and performance of a fast, compact electroabsorption modulator based on TCOs. The modulator works by using bias voltage to increase the carrier density in the conducting oxide, which changes the permittivity and hence optical attenuation by almost 10 dB. Under bias, light is tightly confined to the conducting oxide layer through nonresonant epsilon-near-zero (ENZ) effects, which enable modulation over a broad range of wavelengths in the telecommunications band. Our approach features simple integration with passive silicon waveguides, the use of stable inorganic materials, and the ability to modulate both transverse electric and magnetic polarizations with the same device design. Using a 4-μm-long modulator and a drive voltage of 2 Vpp, we demonstrate digital modulation at rates of 2.5 Gb/s. We report broadband operation with a 6.5 dB extinction ratio across the 1530–1590 nm band and a 10 dB insertion loss. This work verifies that high-speed ENZ devices can be created using conducting oxide materials and paves the way for additional technology development that could have a broad impact on future optical communications systems.
Epsilon-near-zero materials provide a new path for tailoring light-matter interactions at the nanoscale. In this paper, we analyze a compact electroabsorption modulator based on epsilon-near-zero confinement in transparent conducting oxide films. The nonresonant modulator operates through field-effect carrier density tuning. We compare the performance of modulators composed of two different conducting oxides, namely, indium oxide (In2O3) and cadmium oxide (CdO), and show that better modulation performance is achieved when using high-mobility (i.e., low loss) epsilon-near-zero materials such as CdO. In particular, we show that nonresonant electroabsorption modulators with submicron lengths and greater than 5 dB extinction ratios may be achieved through the proper selection of high-mobility transparent conducting oxides, opening a path for device miniaturization and increased modulation depth.
Herein, we describe a novel multifunctional metal–organic framework (MOF) materials platform that displays both porosity and tunable emission properties as a function of the metal identity (Eu, Nd, and tuned compositions of Nd/Yb). Their emission collectively spans the deep red to near-infrared (NIR) spectral region (~614–1350 nm), which is highly relevant for in vivo bioimaging. These new materials meet important prerequisites as relevant to biological processes: they are minimally toxic to living cells and retain structural integrity in water and phosphate-buffered saline. To assess their viability as optical bioimaging agents, we successfully synthesized the nanoscale Eu analog as a proof-of-concept system in this series. In vitro studies show that it is cell-permeable in individual RAW 264.7 mouse macrophage and HeLa human cervical cancer tissue culture cells. The efficient discrimination between the Eu emission and cell autofluorescence was achieved with hyperspectral confocal fluorescence microscopy, used here for the first time to characterize MOF materials. Importantly, this is the first report that documents the long-term conservation of the intrinsic emission in live cells of a fluorophore-based MOF to date (up to 48 h). As a result this finding, in conjunction with the materials’ very low toxicity, validates the biocompatibility in these systems and qualifies them as promising for use in long-term tracking and biodistribution studies.
Ultrafast control of the polarization state of light may enable a plethora of applications in optics, chemistry and biology. However, conventional polarizing elements, such as polarizers and waveplates, are either static or possess only gigahertz switching speeds. Here, with the aid of high-mobility indium-doped cadmium oxide (CdO) as the gateway plasmonic material, we realize a high-quality factor Berreman-type perfect absorber at a wavelength of 2.08 μm. On sub-bandgap optical pumping, the perfect absorption resonance strongly redshifts because of the transient increase of the ensemble-averaged effective electron mass of CdO, which leads to an absolute change in the p-polarized reflectance from 1.0 to 86.3%. By combining the exceedingly high modulation depth with the polarization selectivity of the perfect absorber, we experimentally demonstrate a reflective polarizer with a polarization extinction ratio of 91 that can be switched on and off within 800 fs.