Publications

4 Results
Skip to search filters

Phase transformation of PZST-86/14-5-2Nb ceramic under quasi-static loading conditions

Broome, Scott T.; Bauer, Stephen J.; Montgomery, Stephen M.; Scofield, Timothy W.; Hofer, John H.

Specimens of poled and unpoled PZST ceramic were tested under hydrostatic loading conditions at temperatures of -55, 25, and 75 C. The objective of this experimental study was to obtain the electro-mechanical properties of the ceramic and the criteria of FE (Ferroelectric) to AFE (Antiferroelectric) phase transformations of the PZST ceramic to aid grain-scale modeling efforts in developing and testing realistic response models for use in simulation codes. As seen in previous studies, the poled ceramic from PZST undergoes anisotropic deformation during the transition from a FE to an AFE phase at -55 C. Warmer temperature tests exhibit anisotropic deformation in both the FE and AFE phase. The phase transformation is permanent at -55 C for all ceramics tests, whereas the transformation can be completely reversed at 25 and 75 C. The change in the phase transformation pressures at different temperatures were practically identical for both unpoled and poled PZST specimens. Bulk modulus for both poled and unpoled material was lowest in the FE phase, intermediate in the transition phase, and highest in the AFE phase. Additionally, bulk modulus varies with temperature in that PZST is stiffer as temperature decreases. Results from one poled-biased test for PZST and four poled-biased tests from PNZT 95/5-2Nb are presented. A bias of 1kV did not show noticeable differences in phase transformation pressure for the PZST material. However, with PNZT 95/5-2Nb phase transformation pressure increased with increasing voltage bias up to 4.5kV.

More Details

Chem-prep PZT95/5 for neutron generator applications : the effect of pore former type and density on the depoling behavior of chemically prepared PZT 95/5 ceramics

Yang, Pin Y.; Yang, Pin Y.; Moore, Roger H.; Lockwood, Steven J.; Tuttle, Bruce T.; Voigt, James A.; Scofield, Timothy W.

The hydrostatically induced ferroelectric(FE)-to-antiferroelectric(AFE) phase transformation for chemically prepared niobium modified PZT 95/5 ceramics was studied as a function of density and pore former type (Lucite or Avicel). Special attention was placed on the effect of different pore formers on the charge release behavior associated with the FE-to-AFE phase transformation. Within the same density range (7.26 g/cm3 to 7.44 g/cm3), results showed that ceramics prepared with Lucite pore former exhibit a higher bulk modulus and a sharper polarization release behavior than those prepared with Avicel. In addition, the average transformation pressure was 10.7% greater and the amount of polarization released was 2.1% higher for ceramics with Lucite pore former. The increased transformation pressure was attributed to the increase of bulk modulus associated with Lucite pore former. Data indicated that a minimum volumetric transformational strain of -0.42% was required to trigger the hydrostatically induced FE-to-AFE phase transformation. This work has important implications for increasing the high temperature charge output for neutron generator power supply units.

More Details

Robocast Pb(Zr{sub 0.95}Ti{sub 0.05})O{sub 3} Ceramic Monoliths and Composites

Journal of American Ceramic Society

Tuttle, Bruce T.; Smay, James E.; Cesarano, Joseph C.; Voigt, James A.; Scofield, Timothy W.; Olson, Walter R.

Robocasting, a computer controlled slurry deposition technique, was used to fabricate ceramic monoliths and composites of chemically prepared Pb(Zr{sub 0.95}Ti{sub 0.05})O{sub 3} (PZT 95/5) ceramics. Densities and electrical properties of the robocast samples were equivalent to those obtained for cold isostatically pressed (CIP) parts formed at 200 MPa. Robocast composites consisting of alternate layers of the following sintered densities: (93.9%--96.1%--93.9%), were fabricated using different levels of organic pore former additions. Modification from a single to a multiple material deposition robocaster was essential to the fabrication of composites that could withstand repeated cycles of saturated polarization switching under 30 kV/cm fields. Further, these composites withstood 500 MPa hydrostatic pressure induced poled ferroelectric (FE) to antiferroelectric (AFE) phase transformation during which strain differences on the order of 0.8% occurred between composite elements.

More Details
4 Results
4 Results