Publications

Results 1–25 of 60
Skip to search filters

Progress in Modeling the 2019 Extended Magnetically Insulated Transmission Line (MITL) and Courtyard Environment Trial at HERMES-III

Cartwright, Keith C.; Pointon, Tim P.; Powell, Troy C.; Grabowski, Theodore C.; Shields, Sidney S.; Sirajuddin, David S.; Jensen, Daniel S.; Renk, Timothy J.; Cyr, Eric C.; Stafford, David S.; Swan, Matthew S.; Mitra, Sudeep M.; McDoniel, William M.; Moore, Christopher H.

This report documents the progress made in simulating the HERMES-III Magnetically Insulated Transmission Line (MITL) and courtyard with EMPIRE and ITS. This study focuses on the shots that were taken during the months of June and July of 2019 performed with the new MITL extension. There were a few shots where there was dose mapping of the courtyard, 11132, 11133, 11134, 11135, 11136, and 11146. This report focuses on these shots because there was full data return from the MITL electrical diagnostics and the radiation dose sensors in the courtyard. The comparison starts with improving the processing of the incoming voltage into the EMPIRE simulation from the experiment. The currents are then compared at several location along the MITL. The simulation results of the electrons impacting the anode are shown. The electron impact energy and angle is then handed off to ITS which calculates the dose on the faceplate and locations in the courtyard and they are compared to experimental measurements. ITS also calculates the photons and electrons that are injected into the courtyard, these quantities are then used by EMPIRE to calculated the photon and electron transport in the courtyard. The details for the algorithms used to perform the courtyard simulations are presented as well as qualitative comparisons of the electric field, magnetic field, and the conductivity in the courtyard. Because of the computational burden of these calculations the pressure was reduce in the courtyard to reduce the computational load. The computation performance is presented along with suggestion on how to improve both the computational performance as well as the algorithmic performance. Some of the algorithmic changed would reduce the accuracy of the models and detail comparison of these changes are left for a future study. As well as, list of code improvements there is also a list of suggested experimental improvements to improve the quality of the data return.

More Details

Characterization of self-magnetic pinch (SMP) radiographic diode performance on RITS-6 at Sandia National Laboratories. I. Diode dynamics, DC heating to extend radiation pulse

Physics of Plasmas

Renk, Timothy J.; Oliver, Bryan V.; Kiefer, Mark l.; Webb, Timothy J.; Leckbee, J.J.; Johnston, Mark D.; Simpson, Stephen S.; Mazarkis, M.G.

Radiographic diodes focus on an intense electron beam to a small spot size to minimize the source area of energetic photons for radiographic interrogation. The self-magnetic pinch (SMP) diode has been developed as such a source and operated as a load for the six-cavity radiographic integrated test stand (RITS-6) inductive voltage adder driver. While experiments support the generally accepted conclusion that a 1:1 aspect diode (cathode diameter equals anode–cathode gap) delivers optimum SMP performance, such experiments also show that reducing the cathode diameter, while reducing spot size, also results in reduced radiation dose, by as much as 50%, and degraded shot reproducibility. Analysis of the effective electron impingement angle on the anode converter with time made possible by a newly developed dose-rate array diagnostic indicates that fast-developing oscillations of the angle are correlated with early termination of the radiation pulse on many of the smaller-diameter SMP shots. This behavior as a function of relative cathode size persists through experiments with output voltages and currents up to 11.5 MV and 225 kA, respectively, and with spot sizes below approximately few millimeters. Since simulations to date have not predicted such oscillatory behavior, considerable discussion of the angle behavior of SMP shots is made to lend credence to the inference. We report there is clear anecdotal evidence that DC heating of the SMP diode region leads to stabilization of this oscillatory behavior. This is the first of two papers on the performance of the SMP diode on the RITS-6 accelerator.

More Details

Characterization of self-magnetic pinch radiographic diode performance on RITS-6 at Sandia National Laboratories. II. Coupling between the inductive voltage adder and the SMP load

Physics of Plasmas

Renk, Timothy J.; Oliver, Bryan V.; Kiefer, M.L.; Webb, Timothy J.; Leckbee, J.J.; Johnston, Mark D.; Simpson, Stephen S.; Mazarakis, Michael G.

The self-magnetic pinch (SMP) diode is a type of radiographic diode used to generate an intense electron beam for radiographic applications. At Sandia National Laboratories, SMP was the diode load for the six-cavity radiographic integrated test stand inductive voltage adder (IVA) driver operated in a magnetically insulated transmission line (MITL). The MITL contributes a flow current in addition to the current generated within the diode itself. Extensive experiments with a MITL of 40 Ω load impedance [T. J. Renk et al., Phys. Plasmas 29, 023105 (2022)] indicate that the additional flow current leads to results similar to what might be expected from a conventional high-voltage interface driver, where flow current is not present. However, when the MITL flow impedance was increased to 80 Ω, qualitatively different diode behavior was observed. This includes large retrapping waves suggestive of an initial coupling to low impedance as well as diode current decreasing with time even as the total current does not. A key observation is that the driver generates total current (flow + diode) consistent with the flow impedance of the MITL used. The case is made in this paper that the 80 Ω MITL experiments detailed here can only be understood when the IVA-MITL-SMP diode is considered as a total system. The constraint of fixed total current plus the relatively high flow impedance limits the ability of the diode (whether SMP or other type) to act as an independent load. An unexpected new result is that in tracking the behavior of the electron strike angle on the converter as a function of time, we observed that the conventional cIV x “Radiographic” radiation scaling (where x ∼ 2.2) begins to break down for voltages above 8 MV, and cubic scaling is required to recover accurate angle tracking.

More Details

Characterization of Self-Magnetic Pinch (SMP) radiographic diode performance on RITS-6 at Sandia National Laboratories: 1) Diode Dynamics, DC Heating to extend Radiation Pulse

Renk, Timothy J.; Oliver, Bryan V.; Kiefer, Mark.L.; Webb, Timothy J.; Leckbee, Joshua J.; Johnston, Mark D.; Simpson, Sean S.; Mazarakis, Michael G.

Radiographic diodes focus an intense electron beam to a small spot size to minimize the source area of energetic photons for radiographic interrogation. The self-magnetic pinch (SMP) diode has been developed as such a source and operated as a load for the RITS-6 Inductive Voltage Adder (IVA) driver. While experiments support the generally accepted conclusion that a 1:1 aspect diode (cathode diameter equals anode-cathode gap) delivers optimum SMP performance, such experiments also show that reducing the cathode diameter, while reducing spot size, also results in reduced radiation dose, by as much as 50%, and degraded shot reproducibility. Analyzation of the effective electron impingement angle on the anode converter with time made possible by a newly developed dose-rate array diagnostic indicates that fast-developing oscillations of the angle are correlated with early termination of the radiation pulse on many of the smaller-diameter SMP shots. This behavior as a function of relative cathode size persists through experiments with output voltages and currents up to 11.5 MV and 225 kA, respectively, and with spot sizes below ~ few mm. Since simulations to date have not predicted such oscillatory behavior, considerable discussion of the angle-behavior of SMP shots is made to lend credence to the inference. There is clear anecdotal evidence that DC heating of the SMP diode region leads to stabilization of this oscillatory behavior. This is the first of two papers on the performance of the SMP diode on the RITS-6 accelerator.

More Details

Development of Fast-Pulse Neutron Generation Capability by Beam-Target Interaction on HERMES-III for Radiation Effects Testing (Final Report)

Renk, Timothy J.; Ottinger, Paul O.; Durrer, Russell E.

The goal of this project is to produce an intense neutron pulse on HERMES III using the beam-target method with an intense proton beam. The potential advantage of proton use is that the generated neutron spectrum contains significantly more high-energy neutrons than that produced by electron-beam generated photoneutrons using the same facility. And compared to (D,T) facilities such as NIF, no tritium (or deuterium) is required for this process. To achieve the mid ~1010 neutrons/cm2 at a test object location listed as the goal in the Proposal, it was proposed that a radial ion diode previously developed and fielded at the 6 MeV - level be extended in performance to the full-power level on HERMES, with proton energies in the neighborhood of 15 MeV. This Report details the successful development of the radial ion diode at full power, which required more durable hardware which could be fielded at a one shot/day basis with minimal debris and activation (an important concern), and which could be substituted quickly into the normal negative-polarity bremsstrahlung source experiments without compromising the main HERMES validation mission. As direct measurement of proton beam characteristics proved challenging, the Project relied on an extensive series of simulations, LSP for beam dynamics and MCNP to characterize neutron output. Simulation results will be discussed, including the conclusion that neutron measurements made are consistent with an MCNP-predicted proton beam of 16 MeV peak energy, and 200 kA peak current. This Project also contributes to physics understanding of the use of inductive voltage adder (IVA) platforms to drive diode loads. Since such diodes operate independently of the physics of IVAs, the IVA-diode coupling requires matching of the MITL flow to the requirements of ion diode operation.

More Details

Coupled EM-PIC/Radiation Transport Simulations of HERMES Courtyard Experiments

Pointon, Timothy D.; Pointon, Timothy D.; Cartwright, Keith C.; Renk, Timothy J.; Yee, Benjamin T.

A suite of coupled computational models for simulating the radiation, plasma, and electromagnetic (EM) environment in the High-Energy Radiation Megavolt Electron Source (HERMES) courtyard has been developed. In principle, this provides a predictive forward-simulation capability based solely on measured upstream anode and cathode current waveforms in the Magnetically Insulated Transmission Line (MITL). First, 2D R-Z ElectroMagnetic Particle-in-Cell (EM-PIC) simulations model the MITL and diode to compute a history of all electrons incident on the converter. Next, radiation transport simulations use these electrons as a source to compute the time-dependent dose rate and volumetric electron production in the courtyard. Finally, the radiation transport output is used as sources for EM-PIC simulations of the courtyard to com- pute electromagnetic responses. This suite has been applied to the November 2016 trials, shots 10268-10313. Modeling and experiment differ in significant ways. This is just the first iteration of a long process to improve the agreement, as outlined in the summary.

More Details

HERMES Outdoor Shot Series 10268- 313: Data Analysis as a Model for Output Voltage and Current Estimates for HERMES Shots; a User Perspective

Renk, Timothy J.

The primary subject of this Report is the description and characterization of results (voltages, currents, radiation dose and dose - rates) from the HERMES accelerator operated in the Outdoor Mode. The shots described range from 10266 - 10313, and were taken in late 2016. In the course of determining the most accurate estimates of voltage and current, a prescriptive procedure is developed to process the raw data posted to the HERMES database. The curren t estimates are tied to voltage determination using the MITL theory of Mendel, as modified by Schumer and Ottinger. The converter currents are accurately recorded due to newly calibrated monitors at the converter location. Additional historical information about the development of the HERMES current monitor set is included to enhance the archival value of this Report. The evolution of the TLD faceplate profile from non - peaked center to center - peaked is discuss ed , with hypotheses as to the cause. The prescript ive procedure discussed herein is accurate as of the day of printing. Should the prescription be modified and updated, this Report would also need updating.

More Details

Contribution of the backstreaming ions to the self-magnetic pinch (SMP) diode current

Physics of Plasmas

Mazarakis, Michael G.; Bennett, Nichelle; Cuneo, M.E.; Fournier, Sean D.; Johnston, Mark D.; Kiefer, Mark L.; Leckbee, Joshua L.; Nielsen, D.S.; Oliver, Bryan V.; Sceiford, Matthew S.; Simpson, Sean S.; Renk, Timothy J.; Ruiz, Carlos L.; Webb, Timothy J.; Ziska, Derek Z.; Droemer, Darryl W.; Gignac, Raymond E.; Obregon, Robert J.; Wilkins, Frank L.; Welch, Dale R.

The results presented here were obtained with a self-magnetic pinch (SMP) diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The RITS driver together with the SMP diode has produced x-ray spots of the order of 1 mm in diameter and doses adequate for the radiographic imaging of high area density objects. Although, through the years, a number of different types of radiographic electron diodes have been utilized with SABER, HERMES III and RITS accelerators, the SMP diode appears to be the most successful and simplest diode for the radiographic investigation of various objects. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target and second to try to evaluate the energy of those ions and hence the Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage adder utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the A-K gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (∼1 cm) and the diode region very hostile. The accelerating voltage quoted in the literature is from estimates based on the measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus, it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high-Z metals in order to produce copious and energetic flash x-rays. It was established experimentally that the back-streaming ion currents are a strong function of the anode materials and their stage of cleanness. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatment: namely, heating at very high temperatures with DC and pulsed current, with RF plasma cleaning, and with both plasma cleaning and heating. We have also evaluated the A-K gap voltage by energy filtering technique. Experimental results in comparison with LSP simulations are presented.

More Details
Results 1–25 of 60
Results 1–25 of 60