Publications

Results 1–50 of 84
Skip to search filters

Variational, stable, and self-consistent coupling of 3D electromagnetics to 1D transmission lines in the time domain

Journal of Computational Physics

McGregor, Duncan A.; Phillips, Edward; Sirajuddin, David S.; Pointon, Timothy D.

This work presents a new multiscale method for coupling the 3D Maxwell's equations to the 1D telegrapher's equations. While Maxwell's equations are appropriate for modeling complex electromagnetics in arbitrary-geometry domains, simulation cost for many applications (e.g. pulsed power) can be dramatically reduced by representing less complex transmission line regions of the domain with a 1D model. By assuming a transverse electromagnetic (TEM) ansatz for the solution in a transmission line region, we reduce the Maxwell's equations to the telegrapher's equations. We propose a self-consistent finite element formulation of the fully coupled system that uses boundary integrals to couple between the 3D and 1D domains and supports arbitrary unstructured 3D meshes. Additionally, by using a Lagrange multiplier to enforce continuity at the coupling interface, we allow for an absorbing boundary condition to also be applied to non-TEM modes on this boundary. We demonstrate that this feature reduces non-physical reflection and ringing of non-TEM modes off of the coupling boundary. By employing implicit time integration, we ensure a stable coupling, and we introduce an efficient method for solving the resulting linear systems. We demonstrate the accuracy of the new method on two verification problems, a transient O-wave in a rectilinear prism and a steady-state problem in a coaxial geometry, and show the efficiency and weak scalability of our implementation on a cold test of the Z-machine MITL and post-hole convolute.

More Details

November 2016 HERMES Outdoor Shot Series 10268-313: Free Space Fields and Current Coupling

Yee, Benjamin T.; Cartwright, Keith C.; Pointon, Timothy D.

During the trials during November 2016 at the HERMES III facility, a number of sensors were fielded to measure the free fields and currents coupled to aerial and buried cables. Here, we report on the work done to compensate, correct, and analyze these signals. Average results are presented for selected sets of sensors and prelimi- nary analyses are provided of the time and frequency domain signals. Electric fields were typically on the order of 10 kV/m, magnetic fields were approximately 10 AT, and currents were around 10 A. Several opportunities for improvement are identified including quantification of radiation effects on sensors, higher accuracy compensation techniques, increased sensitivity in differential sensor measurements, and exploration of the use of I-dots in conductivity calculations.

More Details

Coupled EM-PIC/Radiation Transport Simulations of HERMES Courtyard Experiments

Pointon, Timothy D.; Pointon, Timothy D.; Cartwright, Keith C.; Renk, Timothy J.; Yee, Benjamin T.

A suite of coupled computational models for simulating the radiation, plasma, and electromagnetic (EM) environment in the High-Energy Radiation Megavolt Electron Source (HERMES) courtyard has been developed. In principle, this provides a predictive forward-simulation capability based solely on measured upstream anode and cathode current waveforms in the Magnetically Insulated Transmission Line (MITL). First, 2D R-Z ElectroMagnetic Particle-in-Cell (EM-PIC) simulations model the MITL and diode to compute a history of all electrons incident on the converter. Next, radiation transport simulations use these electrons as a source to compute the time-dependent dose rate and volumetric electron production in the courtyard. Finally, the radiation transport output is used as sources for EM-PIC simulations of the courtyard to com- pute electromagnetic responses. This suite has been applied to the November 2016 trials, shots 10268-10313. Modeling and experiment differ in significant ways. This is just the first iteration of a long process to improve the agreement, as outlined in the summary.

More Details

EMPHASIS™/Nevada UTDEM User Guide Version 2.1.2

Turner, C.D.; Pasik, Michael F.; Seidel, David B.; Pointon, Timothy D.; Cartwright, Keith C.; Kramer, Richard M.; McGregor, Duncan A.

The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell’s equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest.

More Details

EMPHASIS(TM)/Nevada UTDEM User Guide Version 2.1.1

Turner, C.D.; Pasik, Michael F.; Pointon, Timothy D.; Pointon, Timothy D.; Cartwright, Keith C.

The Unstructured Time - Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite - element techniques on unstructured meshes. This document provides user - specific information to facilitate the use of the code for ap plications of interest. Acknowledgement The authors would like to thank all of those individuals who have helped to bring EMPHASIS/Nevada to the point it is today, including Bill Bohnhoff, Rich Drake, and all of the NEVADA code team.

More Details

EMPHASIS(TM)/Nevada Unstructured FEM Implementation Version 2.1.1

Turner, C.D.; Pointon, Timothy D.; Cartwright, Keith C.

EMPHASIS TM /NEVADA is the SIERRA/NEVADA toolkit implementation of portions of the EMP HASIS TM code suite. The purpose of the toolkit i m- plementation is to facilitate coupling to other physics drivers such as radi a- tion transport as well as to better manage code design, implementation, co m- plexity, and important verification and validation processes. This document describes the theory and implementation of the unstructured finite - element method solver , associated algorithms, and selected verification and valid a- tion . Acknowledgement The author would like to recognize all of the ALEGRA team members for their gracious and willing support through this initial Nevada toolkit - implementation process. Although much of the knowledge needed was gleaned from document a- tion and code context, they were always willing to consult personally on some of the less obvious issues and enhancements necessary.

More Details

New self-magnetically insulated connection of multi-level accelerators to a common load

Digest of Technical Papers-IEEE International Pulsed Power Conference

VanDevender, J.P.; Langston, William L.; Pasik, Michael F.; Coats, Rebecca S.; Pointon, Timothy D.; Seidel, David B.; Jennings, C.A.; McKee, G.R.; Schneider, Larry X.

We have developed a new type of convolute called the Clam Shell MITL (CSMITL) to couple multi-level accelerators to a common load. The CSMITL has magnetic nulls only at large radius where the cathode electric field is kept below the threshold for emission, has only a simply connected magnetic topology to avoid plasma motion along magnetic field lines into highly stressed gaps, and has electron injectors that ensure efficient electron flow even in the limiting case of self-limited MITLs. We report the first experimental results on a CSMITL, which convolutes two disk feeds on the Saturn accelerator into a single disk feed. Experiments with a high impedance electron beam load operating at twice the self-limited impedance of the CSMITL confirm key design features and demonstrate robust operation. © 2011 IEEE.

More Details

PIC simulations of power flow in a linear transformer driver for radiographic applications

Digest of Technical Papers-IEEE International Pulsed Power Conference

Pointon, Timothy D.; Seidel, David B.; Leckbee, Joshua L.; Oliver, Bryan V.

The 7 cavity, 1 MV linear transformer driver for radiography at Sandia National Laboratories has recently been upgraded to 21 cavities with an output voltage of 2.5 MV. In this paper, results from 2-D, r-z particle-in-cell simulations of the full 21 cavity system are presented. Each cavity feed is driven with its own external RLC circuit that is independently triggered, and has a realistic 45° slanted vacuum/insulator. Electrons are emitted from the central cathode with a conventional space-charge-limited emission model. Detailed diagnostics monitor electron loss to the anode, cavity conductors, and the insulators. The most significant and encouraging result is that the simulations have absolutely no electron loss to the insulators, even with large random variations in the trigger timing. © 2011 IEEE.

More Details

Controlling feed electron flow in MITL-driven radiographic diodes

Digest of Technical Papers-IEEE International Pulsed Power Conference

Seidel, David B.; Pointon, Timothy D.; Oliver, Bryan V.

The electrons flowing in a coaxial magnetically insulated transmission line (MITL), if allowed to flow uncontrolled into a radiographic electron diode load, can have an adverse impact on the performance of the system. Total radiation dose, impedance lifetime, and spot quality (size, shape, position, and stability) can all be affected. Current approaches to deal with this problem require a large volume in the vicinity of the electron diode load. For applications where this volume is not available, an alternate method of controlling the feed electrons is needed. In this paper, we will investigate various ideas for dealing with this issue and present results showing the properties of the various schemes investigated. © 2011 IEEE.

More Details

Modeling electrode plasma effects in particle-in-cell simulation of high power devices

Pointon, Timothy D.

A new method for including electrode plasma effects in particle-in-cell simulation of high power devices is presented. It is not possible to resolve the plasma Debye length, {lambda}{sub D} {approx} 1 {mu}m, but using an explicit, second-order, energy-conserving particle pusher avoids numerical heating at large {delta}x/{lambda}{sub D} >> 1. Non-physical plasma oscillations are mitigated with Coulomb collisions and a damped particle pusher. A series of 1-D simulations show how plasma expansion varies with cell size. This reveals another important scale length, {lambda}{sub E} = T/(eE), where E is the normal electric field in the first vacuum cell in front of the plasma, and T is the plasma temperature. For {delta}x/{lambda}{sub E} < {approx}1, smooth, physical plasma expansion is observed. However, if {delta}x/{lambda}{sub E} >> 1, the plasma 'expands' in abrupt steps, driven by a numerical instability. For parameters of interest, {lambda}{sub E} << 100 {mu}m. It is not feasible to use cell sizes small enough to avoid this instability in large 3-D simulations.

More Details
Results 1–50 of 84
Results 1–50 of 84