Battery storage systems are increasingly being installed at photovoltaic (PV) sites to address supply-demand balancing needs. Although there is some understanding of costs associated with PV operations and maintenance (O&M), costs associated with emerging technologies such as PV plus storage lack details about the specific systems and/or activities that contribute to the cost values. This study aims to address this gap by exploring the specific factors and drivers contributing to utility-scale PV plus storage systems (UPVS) O&M activities costs, including how technology selection, data collection, and related and ongoing challenges. Specifically, we used semi-structured interviews and questionnaires to collect information and insights from utility-scale owners and operators. Data was collected from 14 semi-structured interviews and questionnaires representing 51.1 MW with 64.1 MWh of installed battery storage capacity within the United States (U.S.). Differences in degradation rate, expected life cycle, and capital costs are observed across different storage technologies. Most O&M activities at UPVS related to correcting under-performance. Fires and venting issues are leading safety concerns, and owner operators have installed additional systems to mitigate these issues. There are ongoing O&M challenges due the lack of storage-specific performance metrics as well as poor vendor reliability and parts availability. Insights from this work will improve our understanding of O&M consideration at PV plus storage sites.
Failure detection methods are of significant interest for photovoltaic (PV) site operators to help reduce gaps between expected and observed energy generation. Current approaches for field-based fault detection, however, rely on multiple data inputs and can suffer from interpretability issues. In contrast, this work offers an unsupervised statistical approach that leverages hidden Markov models (HMM) to identify failures occurring at PV sites. Using performance index data from 104 sites across the United States, individual PV-HMM models are trained and evaluated for failure detection and transition probabilities. This analysis indicates that the trained PV-HMM models have the highest probability of remaining in their current state (87.1% to 93.5%), whereas the transition probability from normal to failure (6.5%) is lower than the transition from failure to normal (12.9%) states. A comparison of these patterns using both threshold levels and operations and maintenance (O&M) tickets indicate high precision rates of PV-HMMs (median = 82.4%) across all of the sites. Although additional work is needed to assess sensitivities, the PV-HMM methodology demonstrates significant potential for real-time failure detection as well as extensions into predictive maintenance capabilities for PV.
Tidwell, Vincent T.; Gunda, Thushara G.; Caballero, Mariah D.; Xu, Pei X.; Xu, Xuesong X.; Bernknopf, Rich B.; Broadbent, Craig B.; Malczynski, Len M.; Jacobson, Jake J.
A proof-of-concept tool, the Produced Water-Economic, Socio, Environmental Simulation model (PW-ESESim), was developed to support ease of analysis. The tool was designed to facilitate head-to-head comparison of alternative produced water source, treatment, and reuse water management strategies. A graphical user interface (GUI) guides the user through the selection and design of alternative produced water treatment and reuse strategies and the associated health and safety risk and economic benefits. At the highest conceptual level, alternative water strategies include the selection of a source water (locally or regionally available produced water), treatment strategy (pre-treatment, physical, chemical, biological, desalination, and post-treatment processes) and product water purpose (e.g., irrigation, industrial processing, environmental). After selection of these details, the PW-ESESim output a number of key economic, societal, environmental, public/ecological health and safety metrics to support user decision-making; specific examples include, cost of treatment, improvements in freshwater availability, human and ecologic health impacts and growth in local jobs and the economy. Through the simulation of different produced water treatment and management strategies, tradeoffs are identified and used to inform fit-for-purpose produced water treatment and reuse management decisions. While the tool was initially designed using Southeastern New Mexico (Permian Basin) as a case study, the general design of the PW-ESESim model can be extended to support other oil and gas regions of the U.S.
Drinking water has and will continue to be at the foundation of our nation’s well-being and there is a growing interest in United States (US) drinking water quality. Nearly 30% of the United States population obtained their water from community water systems that did not meet federal regulations in 2019. Given the heavy interactions between society and drinking water quality, this study integrates social constructionism, environmental injustice, and sociohydrological systems to evaluate local awareness of drinking water quality issues. By employing text analytics, we explore potential drivers of regional water quality narratives within 25 local news sources across the United States. Specifically, we assess the relationship between printed local newspapers and water quality violations in communities as well as the influence of social, political, and economic factors on the coverage of drinking water quality issues. Results suggest that the volume and/or frequency of local drinking water violations is not directly reflected in local news coverage. Additionally, news coverage varied across sociodemographic features, with a negative relationship between Hispanic populations and news coverage of Lead and Copper Rule, and a positive relationship among non-Hispanic white populations. These findings extend current understanding of variations in local narratives to consider nuances of water quality issues and indicate opportunities for increasing equity in environmental risk communication.
Drinking water has and will continue to be at the foundation of our nation’s well-being and there is a growing interest in United States (US) drinking water quality. Nearly 30% of the United States population obtained their water from community water systems that did not meet federal regulations in 2019. Given the heavy interactions between society and drinking water quality, this study integrates social constructionism, environmental injustice, and sociohydrological systems to evaluate local awareness of drinking water quality issues. By employing text analytics, we explore potential drivers of regional water quality narratives within 25 local news sources across the United States. Specifically, we assess the relationship between printed local newspapers and water quality violations in communities as well as the influence of social, political, and economic factors on the coverage of drinking water quality issues. Results suggest that the volume and/or frequency of local drinking water violations is not directly reflected in local news coverage. Additionally, news coverage varied across sociodemographic features, with a negative relationship between Hispanic populations and news coverage of Lead and Copper Rule, and a positive relationship among non-Hispanic white populations. These findings extend current understanding of variations in local narratives to consider nuances of water quality issues and indicate opportunities for increasing equity in environmental risk communication.
There has been ever-growing interest and engagement regarding net-zero and carbon neutrality goals, with many nations committing to steep emissions reductions by mid-century. Although water plays critical roles in various sectors, there has been a distinct gap in discussions to date about the role of water in the transition to a carbon neutral future. To address this need, a webinar was convened in April 2022 to gain insights into how water can support or influence active strategies for addressing emissions activities across energy, industrial, and carbon sectors. The webinar presentations and discussions highlighted various nuances of direct and indirect water use both within and across technology sectors (Figure ES-1). For example, hydrogen and concrete production, water for mining, and inland waterways transportation are all heavily influenced by the energy sources used (fossil fuels vs. renewable sources) as well as local resource availabilities. Algal biomass, on the other hand, can be produced across diverse geographies (terrestrial to sea) in a range of source water qualities, including wastewater and could also support pollution remediation through nutrient and metals recovery. Finally, water also influences carbon dynamics and cycling within natural systems across terrestrial, aquatic, and geologic systems. These dynamics underscore not only the critical role of water within the energy-water nexus, but also the extension into the energy-watercarbon nexus.
Although unique expected energy models can be generated for a given photovoltaic (PV) site, a standardized model is also needed to facilitate performance comparisons across fleets. Current standardized expected energy models for PV work well with sparse data, but they have demonstrated significant over-estimations, which impacts accurate diagnoses of field operations and maintenance issues. This research addresses this issue by using machine learning to develop a data-driven expected energy model that can more accurately generate inferences for energy production of PV systems. Irradiance and system capacity information was used from 172 sites across the United States to train a series of models using Lasso linear regression. The trained models generally perform better than the commonly used expected energy model from international standard (IEC 61724-1), with the two highest performing models ranging in model complexity from a third-order polynomial with 10 parameters (R2adj= 0.994) to a simpler, second-order polynomial with 4 parameters (R2adj= 0.993), the latter of which is subject to further evaluation. Subsequently, the trained models provide a more robust basis for identifying potential energy anomalies for operations and maintenance activities as well as informing planning-related financial assessments. We conclude with directions for future research, such as using splines to improve model continuity and better capture systems with low (≤1000 kW DC) capacity.
Security assessments support decision-makers' ability to evaluate current capabilities of high consequence facilities (HCF) to respond to possible attacks. However, increasing complexity of today's operational environment requires a critical review of traditional approaches to ensure that implemented assessments are providing relevant and timely insights into security of HCFs. Using interviews and focus groups with diverse subject matter experts (SMEs), this study evaluated the current state of security assessments and identified opportunities to achieve a more "ideal" state. The SME-based data underscored the value of a systems approach for understanding the impacts of changing operational designs and contexts (as well as cultural influences) on security to address methodological shortcomings of traditional assessment processes. These findings can be used to inform the development of new approaches to HCF security assessments that are able to more accurately reflect changing operational environments and effectively mitigate concerns arising from new adversary capabilities.
The global energy system is undergoing significant changes, including a shift in energy generating technologies to more renewable energy sources. However, the dependence of renewable energy sources on local environmental conditions could also increase disruptions in service through exposures to compound, extreme weather events. By fusing three diverse datasets (operations and maintenance tickets, weather data, and production data), this analysis presents a novel methodology to identify and evaluate performance impacts arising from extreme weather events across diverse geographical regions. Text analysis of maintenance tickets identified snow, hurricanes, and storms as the leading extreme weather events affecting photovoltaic plants in the United States. Statistical techniques and machine learning were then implemented to identify the magnitude and variability of these extreme weather impacts on site performance. Impacts varied between event and non-event days, with snow events causing the greatest reductions in performance (54.5%), followed by hurricanes (12.6%) and storms (1.1%). Machine learning analysis identified key features in determining if a day is categorized as low performing, such as low irradiance, geographic location, weather features, and site size. This analysis improves our understanding of compound, extreme weather event impacts on photovoltaic systems. These insights can inform planning activities, especially as renewable energy continues to expand into new geographic and climatic regions around the world.
Tidwell, Vincent C.; Gunda, Thushara G.; Hightower, Michael M.; Xu, Pei X.; Xu, Xuesong X.; Bernknopf, Bernknopf; Broadbent, Craig B.; Malczynski, Len M.; Jacobson, Jake J.
U.S. critical infrastructure assets are often designed to operate for decades, and yet long-term planning practices have historically ignored climate change. With the current pace of changing operational conditions and severe weather hazards, research is needed to improve our ability to translate complex, uncertain risk assessment data into actionable inputs to improve decision-making for infrastructure planning. Decisions made today need to explicitly account for climate change – the chronic stressors, the evolution of severe weather events, and the wide-ranging uncertainties. If done well, decision making with climate in mind will result in increased resilience and decreased impacts to our lives, economies, and national security. We present a three-tier approach to create the research products needed in this space: bringing together climate projection data, severe weather event modeling, asset-level impacts, and contextspecific decision constraints and requirements. At each step, it is crucial to capture uncertainties and to communicate those uncertainties to decision-makers. While many components of the necessary research are mature (i.e., climate projection data), there has been little effort to develop proven tools for long-term planning in this space. The combination of chronic and acute stressors, spatial and temporal uncertainties, and interdependencies among infrastructure sectors coalesce into a complex decision space. By applying known methods from decision science and data analysis, we can work to demonstrate the value of an interdisciplinary approach to climate-hazard decision making for longterm infrastructure planning.
Tidwell, Vincent C.; Gunda, Thushara G.; Hightower, Michael M.; Xu, Pei X.; Bernknopf, Richard B.; Broadbent, Craig B.; Malczynski, Len M.; Jacobson, Jake J.
In this paper we consider the effects of corporate hierarchies on innovation spread across multilayer networks, modeled by an elaborated SIR framework. We show that the addition of management layers can significantly improve spreading processes on both random geometric graphs and empirical corporate networks. Additionally, we show that utilizing a more centralized working relationship network rather than a strict administrative network further increases overall innovation reach. In fact, this more centralized structure in conjunction with management layers is essential to both reaching a plurality of nodes and creating a stable adopted community in the long time horizon. Further, we show that the selection of seed nodes affects the final stability of the adopted community, and while the most influential nodes often produce the highest peak adoption, this is not always the case. In some circumstances, seeding nodes near but not in the highest positions in the graph produces larger peak adoption and more stable long-time adoption.
Protecting high consequence facilities (HCF) from malicious attacks is challenged by today’s increasingly complex, multi-faceted, and interdependent operational environments and threat domains. Building on current approaches, insights from complex systems and network science can better incorporate multidomain interactions observed in HCF security operations. These observations and qualitative HCF security expert data support invoking a multilayer modeling approach for HCF security to shift from a “reactive” to a “proactive” paradigm that better explores HCF security dynamics and resilience not captured in traditional approaches. After exploring these multi-domain interactions, this paper introduces how systems theory and network science insights can be leveraged to describe HCF security as complex, interdependent multilayer directed networks. A hypothetical example then demonstrates the utility of such an approach, followed by a discussion on key insights and implications of incorporating multilayer network analytical performance measures into HCF security.
Accurate diagnosis of failures is critical for meeting photovoltaic (PV) performance objectives and avoiding safety concerns. This analysis focuses on the classification of field-collected string-level current-voltage (IV) curves representing baseline, partial soiling, and cracked failure modes. Specifically, multiple neural network-based architectures (including convolutional and long short-term memory) are evaluated using domain-informed parameters across different portions of the IV curve and a range of irradiance thresholds. The analysis identified two models that were able to accurately classify the relatively small dataset (400 samples) at a high accuracy (99%+). Findings also indicate optimal irradiance thresholds and opportunities for improvements in classification activities by focusing on portions of the IV curve. Such advancements are critical for expanding accurate classification of PV faults, especially for those with low power loss (e.g., cracked cells) or visibly similar IV curve profiles.
We show seasonal runoff from montane uplands is crucial for plant growth in agricultural communities of northern New Mexico. These communities typically employ traditional irrigation systems, called acequias, which rely mainly upon spring snowmelt runoff for irrigation. The trend of the past few decades is an increase in temperature, reduced snow pack, and earlier runoff from snowmelt across much of the western United States. In order to predict the potential impacts of changes in future climate a system dynamics model was constructed to simulate the surface water supplies in a montane upland watershed of a small irrigated community in northern New Mexico through the rest of the 21st century. End-term simulations of representative concentration pathways (RCP) 4.5 and 8.5 suggest that runoff during the months of April to August could be reduced by 22% and 56%, respectively. End-term simulations also displayed a shift in the beginning and peak of snowmelt runoff by up to one month earlier than current conditions. Results suggest that rising temperatures will drive reduced runoff in irrigation season and earlier snowmelt runoff in the dry season towards the end of the 21st century. Modeled results suggest that climate change leads to runoff scheme shift and increased frequency of drought; due to the uncontemporaneous of irrigation season and runoff scheme, water shortage will increase. Potential impacts of climate change scenarios and mitigation strategies should be further investigated to ensure the resilience of traditional agricultural communities in New Mexico and similar regions.
Food, energy, and water (FEW) are primary resources required for human populations and ecosystems. Availability of the raw resources is essential, but equally important are the services that deliver resources to human populations, such as adequate access to safe drinking water, electricity, and sufficient food. Any failures in either resource availability or FEW resources-related services will have an impact on human health. The ability of countries to intervene and overcome the challenges in the FEW domain depends on governance, education, and economic capacities. We distinguish between FEW resources, FEW services, and FEW health outcomes to develop an analysis framework for evaluating interrelationships among these critical resources. The framework is applied using a data-driven approach for sub-Saharan African countries, a region with notable FEW insecurity challenges. The data-driven approach using a cross-validated stepwise regression analysis indicates that limited governance and socioeconomic capacity in sub-Saharan African countries, rather than lack of the primary resources, more significantly impact access to FEW services and associated health outcomes. The proposed framework helps develop a cohesive approach for evaluating FEW metrics and could be applied to other regions of the world to continue improving our understanding of the FEW nexus.
The IEC 61215 and Qualification Plus indoor aging tests are recognized as valuable assessment procedures for identifying photovoltaic (PV) modules that are prone to early-life failures or excessive degradation. However, it is unclear how well the tests match with reality, and if they can predict in-field performance. Therefore, the present work performed indoor-aging thermal cycling tests on pristine-condition modules and evaluated, using in-field current and voltage (I-V) curve scans, modules of the same make and model exposed to the actual environment within a production field. The experiment included the estimate of the overall exposure to thermal cycling in both indoor and outdoor environments, the extraction of the series resistance from the I-V curves, the development of a model based on the indoor results, and finally the testing of the model on outdoor exposure amounts to predict actual changes in resistance. Index Terms - photovoltaic, accelerated aging, series resistance.
There is growing interest in nexus research: energy-water, energy-water-land, and more recently food-energy-water. Motivating this movement is the recognition that the dynamics and feedbacks that constitute these nexuses have been overlooked in the past but are critical to the planning and management of these interacting elements. Formal reviews have identified gaps in current studies. In this commentary, we highlight additional oversights that are hindering integration of findings in nexus studies, notably usage of imprecise terminology to describe analyses, a failure to close the loop by linking production with corresponding waste streams, and exclusion of dynamics linking diverse constituent elements. Equally lacking from current nexus studies is a consistent protocol for communicating the conceptual basis of our studies. To fill this gap, we draw on diverse perspectives and fields to propose a comprehensive and systematic framework that can guide the model conceptualization phase of nexus studies. We also present a standardized documentation practice (similar to one utilized by the agent-based modeling community) to facilitate communication of nexus studies. These initiatives can improve our ability to account for and communicate the nuanced, food-energy-water nexus interactions in a consistent manner, which is necessary to better inform risk analysis and avoid decisions with unintended consequences and hidden costs to society.
Narratives about water resources have evolved, transitioning from a sole focus on physical and biological dimensions to incorporate social dynamics Recently, the importance of understanding the visibility of water resources through media coverage has gained attention. This study leverages recent advancements in natural language processing (NLP) methods to characterize and understand patterns in water narratives, specifically in 4 local newspapers in Utah and Georgia. Analysis of the corpus identified coherent topics on a variety of water resources issues, including weather and pollution. Closer inspection of the topics revealed temporal and spatial variations in coverage, with a topic on hurricanes exhibiting cyclical patterns whereas a topic on tribal issues showed coverage predominantly in the western newspapers. We also analyzed the dataset for sentiments, identifying similar categories of words on trust and fear emerging in the narratives across newspaper sources. An analysis of novelty, transience, and resonance using Kullback-Leibler Divergence techniques revealed that topics with high novelty generally contained high transience and marginally high resonance over time. Although additional analysis needs to be conducted, the methods explored in this analysis demonstrate the potential of NLP methods to characterize water narratives in media coverage.
Sociohydrological studies use interdisciplinary approaches to explore the complex interactions between physical and social water systems and increase our understanding of emergent and paradoxical system behaviors. The dynamics of community values and social cohesion, however, have received little attention in modeling studies due to quantification challenges. Social structures associated with community-managed irrigation systems around the world, in particular, reflect these communities' experiences with a multitude of natural and social shocks. Using the Valdez acequia (a communally-managed irrigation community in northern New Mexico) as a simulation case study, we evaluate the impact of that community's social structure in governing its responses to water availability stresses posed by climate change. Specifically, a system dynamics model (developed using insights from community stakeholders and multiple disciplines that captures biophysical, socioeconomic, and sociocultural dynamics of acequia systems) was used to generate counterfactual trajectories to explore how the community would behave with streamflow conditions expected under climate change. We found that earlier peak flows, combined with adaptive measures of shifting crop selection, allowed for greater production of higher value crops and fewer people leaving the acequia. The economic benefits were lost, however, if downstream water pressures increased. Even with significant reductions in agricultural profitability, feedbacks associated with community cohesion buffered the community's population and land parcel sizes from more detrimental impacts, indicating the community's resilience under natural and social stresses. Continued exploration of social structures is warranted to better understand these systems' responses to stress and identify possible leverage points for strengthening community resilience.