Publications

28 Results
Skip to search filters

Innovation Flex Time

Ackermann, Mark R.; Osborn, Thor D.

The authors examine the problem of how to provide a time code for staff to use in pursuit of innovation. Four potential options are explored ranging from not providing funds for this activity, to charging such efforts against existing or expanded program management and program development funds. One solution that provides funded time without raising laboratory overhead rates is identified and referred to as Innovation Flex Time. This would consist of capturing hours worked in excess of the standard work week but not charged to customers and making those hours available to fund time for exploring new ideas. A brief examination of labor relations laws, and laws regulating laboratory directed research and development suggests that Innovation Flex Time is a viable option for the laboratory. However, implementation of Innovation Flex Time would require NNSA approval and modification of the existing management and operations contract.

More Details

Geometric Tail Approximation for Reliability and Survivability

Ackermann, Mark R.; Osborn, Thor D.

A common problem in developing high-reliability systems is estimating the reliability for a population of components that cannot be 100% tested. The radiation survivability of a population of components is often estimated by testing a very small sample to some multiple of the required specification level, known as an overtest. Given a successful test with a sufficient overtest margin, the population of components is assumed to have the required survivability or radiation reliability. However, no mathematical justification for such claims has been crafted without making aggressive assumptions regarding the statistics of the unknown distribution. Here we illustrate a new approach that leverages geometric bounding arguments founded on relatively modest distribution assumptions to produce conservative estimates of component reliability.

More Details

Readout IC requirement trends based on a simplified parametric seeker model

Proceedings of SPIE - The International Society for Optical Engineering

Osborn, Thor D.

More Details

Readout IC requirement trends based on a simplified parametric seeker model

Osborn, Thor D.

More Details

Preliminary systems engineering evaluations for the National Ecological Observatory Network

Kottenstette, Richard K.; Heller, Edwin J.; Ivey, Mark D.; Brocato, Robert W.; Zak, Bernard D.; Zirzow, Jeffrey A.; Schubert, William K.; Crouch, Shannon M.; Dishman, James L.; Robertson, Perry J.; Osborn, Thor D.

The National Ecological Observatory Network (NEON) is an ambitious National Science Foundation sponsored project intended to accumulate and disseminate ecologically informative sensor data from sites among 20 distinct biomes found within the United States and Puerto Rico over a period of at least 30 years. These data are expected to provide valuable insights into the ecological impacts of climate change, land-use change, and invasive species in these various biomes, and thereby provide a scientific foundation for the decisions of future national, regional, and local policy makers. NEON's objectives are of substantial national and international importance, yet they must be achieved with limited resources. Sandia National Laboratories was therefore contracted to examine four areas of significant systems engineering concern; specifically, alternatives to commercial electrical utility power for remote operations, approaches to data acquisition and local data handling, protocols for secure long-distance data transmission, and processes and procedures for the introduction of new instruments and continuous improvement of the sensor network. The results of these preliminary systems engineering evaluations are presented, with a series of recommendations intended to optimize the efficiency and probability of long-term success for the NEON enterprise.

More Details

Microsystems technologist workforce development capacity and challenges in Central New Mexico

Osborn, Thor D.

Sandia National Laboratories has made major investments in microsystems-related infrastructure and research staff development over the past two decades, culminating most recently in the MESA project. These investment decisions have been made based in part upon the necessity for highly reliable, secure, and for some purposes, radiation-hardened devices and subsystems for safety and sustainability of the United States nuclear arsenal and other national security applications. SNL's microsystems development and fabrication capabilities are located almost entirely within its New Mexico site, rendering their effectiveness somewhat dependent on the depth and breadth of the local microsystems workforce. Consequently, the status and development capacity of this workforce has been seen as a key personnel readiness issue in relation to the maintenance of SNL's microsystems capabilities. For this reason SNL has supported the instantiation and development of the Southwest Center for Microsystems Education, an Advanced Technology Education center funded primarily by the National Science Foundation, in order to foster the development of local training capacity for microsystems technologists. Although the SCME and the associated Manufacturing Technology program at Central New Mexico Community College have developed an effective curriculum and graduated several highly capable microsystems technologists, the future of both the center and the degree program remain uncertain due to insufficient student enrollment. The central region of New Mexico has become home to many microsystems-oriented commercial firms. As the demands of those firms for technologists evolve, SNL may face staffing problems in the future, especially if local training capacity is lost.

More Details
28 Results
28 Results