Publications

22 Results
Skip to search filters

Modification of a Silicon Photomultiplier for Reduced High Temperature Dark Count Rate

Balajthy, Jon A.; Burkart, James K.; Christiansen, Joel T.; Sweany, Melinda; Udoni, Darlene M.; Weber, Thomas M.

In this work we present a novel method for improving the high-temperature performance of silicon photomultipliers (SiPMs) via focused ion beam (FIB) modification of individual microcells. The literature suggests that most of the dark count rate (DCR) in a SiPM is contributed by a small percentage (<5%) of microcells. By using a FIB to electrically deactivate this relatively small number of microcells, we believe we can greatly reduce the overall DCR of the SiPM at the expense of a small reduction in overall photodetection efficiency, thereby improving its high temperature performance. In this report we describe our methods for characterizing the SiPM to determine which individual microcells contribute the most to the DCR, preparing the SiPM for FIB, and modifying the SiPM using the FIB to deactivate the identified microcells.

More Details

Dual-Particle Imaging System with Neutron Spectroscopy for Safeguard Applications

Weber, Thomas M.; Hamel, Michael C.

A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used iterative list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. For MLEM a stopping condition is required to achieve a good quality solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a good candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution. The application of SOE to the DPI is presented in this work.

More Details

Next Generation Trusted Radiation Identification System (NG-TRIS)

Weber, Thomas M.; Strother, Jerry D.; Amai, Wendy; Etzkin, Joshua E.; Flynn, Adam J.; Merkle, Peter B.

The original Trusted Radiation Identification System (TRIS) was developed from 1999-2001, featuring information barrier technology to collect gamma radiation template measurements useful for arms control regime operations. The first TRIS design relied upon a multichannel analyzer (MCA) that was external to the protected volume of the system enclosure, undesirable from a system security perspective. An internal complex programmable logic device (CPLD) contained data which was not subject to software authentication. Physical authentication of the TRIS instrument case was performed by a sensitive but slow eddy-current inspection method. This paper describes progress to date for the Next Generation TRIS (NG-TRIS), which improves the TRIS design. We have incorporated the MCA internal to the trusted system volume, achieved full authentication of CPLD data, and have devised rapid methods to authenticate the system enclosure and weld seals of the NG-TRIS enclosure. For a complete discussion of the TRIS system and components upon which NG-TRIS is based, the reader is directed to the comprehensive user's manual and system reference of Seager, et al.

More Details
22 Results
22 Results