Publications

Results 1–50 of 63

Search results

Jump to search filters

Application of plasmonic subwavelength structuring to enhance infrared detection

Proceedings of SPIE - The International Society for Optical Engineering

Davids, Paul; Kim, Jin K.; Leonhardt, Darin; Beechem, Thomas E.; Howell, Stephen W.; Ohta, Taisuke; Wendt, Joel R.; Montoya, John A.

Nanoantennas are an enabling technology for visible to terahertz components and may be used with a variety of detector materials. We have integrated subwavelength patterned metal nanoantennas with various detector materials for infrared detection: midwave infrared indium gallium arsenide antimonide detectors, longwave infrared graphene detectors, and shortwave infrared germanium detectors. Nanoantennas offer a means to make infrared detectors much thinner, thus lowering the dark current and improving performance. The nanoantenna converts incoming plane waves to more tightly bound and concentrated surface waves. The active material only needs to extend as far as these bound fields. In the case of graphene detectors, which are only one or two atomic layers thick, such field concentration is a necessity for usable device performance, as single pass absorption is insufficient. The nanoantenna is thus the enabling component of these thin devices. However nanoantenna integration and fabrication vary considerably across these platforms as do the considerations taken into account during design. Here we discuss the motivation for these devices and show examples for the three material systems. Characterization results are included for the midwave infrared detector. © 2014 SPIE.

More Details

Application of plasmonic subwavelength structuring to enhance infrared detection

Proceedings of SPIE - The International Society for Optical Engineering

Davids, Paul; Kim, Jin K.; Leonhardt, Darin; Beechem, Thomas E.; Howell, Stephen W.; Ohta, Taisuke; Wendt, Joel R.; Montoya, John A.

Nanoantennas are an enabling technology for visible to terahertz components and may be used with a variety of detector materials. We have integrated subwavelength patterned metal nanoantennas with various detector materials for infrared detection: midwave infrared indium gallium arsenide antimonide detectors, longwave infrared graphene detectors, and shortwave infrared germanium detectors. Nanoantennas offer a means to make infrared detectors much thinner, thus lowering the dark current and improving performance. The nanoantenna converts incoming plane waves to more tightly bound and concentrated surface waves. The active material only needs to extend as far as these bound fields. In the case of graphene detectors, which are only one or two atomic layers thick, such field concentration is a necessity for usable device performance, as single pass absorption is insufficient. The nanoantenna is thus the enabling component of these thin devices. However nanoantenna integration and fabrication vary considerably across these platforms as do the considerations taken into account during design. Here we discuss the motivation for these devices and show examples for the three material systems. Characterization results are included for the midwave infrared detector. © 2014 SPIE.

More Details

Accelerating the development of transparent graphene electrodes through basic science driven chemical functionalization

Chan, Calvin; Beechem, Thomas E.; Ohta, Taisuke; Brumbach, Michael T.; Wheeler, David R.

Chemical functionalization is required to adapt graphenes properties to many applications. However, most covalent functionalization schemes are spontaneous or defect driven and are not suitable for applications requiring directed assembly of molecules on graphene substrates. In this work, we demonstrated electrochemically driven covalent bonding of phenyl iodoniums onto epitaxial graphene. The amount of chemisorption was demonstrated by varying the duration of the electrochemical driving potential. Chemical, electronic, and defect states of phenyl-modified graphene were studied by photoemission spectroscopy, spatially resolved Raman spectroscopy, and water contact angle measurement. Covalent attachment rehybridized some of the delocalized graphene sp2 orbitals to localized sp3 states. Control over the relative spontaneity (reaction rate) of covalent graphene functionalization is an important first step to the practical realization of directed molecular assembly on graphene. More than 10 publications, conference presentations, and program highlights were produced (some invited), and follow-on funding was obtained to continue this work.

More Details

Raman thermometry of microdevices: Comparing methods to minimize error

Spectroscopy (Santa Monica)

Beechem, Thomas E.; Serrano, Justin R.

A study was conducted to demonstrate that the Raman response had the potential to be implemented in several different manners to deduce temperature. Each approach was derived from a different physical mechanism and offered particular advantages and disadvantages. It was demonstrated that temperature was deduced through the analysis of the inelastic energy transfer between the incident laser source and the quantized lattice vibrations in Raman thermometry. The peak position of the Raman signal was derived from the energy of the zone-center optical phonons that were probed during the Raman experiment. The linewidth of a Raman spectrum evolved as a result of the finite lifetime of the zone-center phonons that were being investigated. It was observed that the Raman signal originated as a consequence of the Heisenberg uncertainty principle, which stipulated that the energy of the phonon was measured only to within a certain specificity when the mode being investigated was available for only a finite amount of time.

More Details

Carotenoid distribution in living cells of haematococcus pluvialis (chlorophyceae)

PLoS ONE

Collins, Aaron M.; Jones, Howland D.T.; Han, Danxiang; Hu, Qiang; Beechem, Thomas E.; Timlin, Jerilyn A.

Haematococcus pluvialis is a freshwater unicellular green microalga belonging to the class Chlorophyceae and is of commercial interest for its ability to accumulate massive amounts of the red ketocarotenoid astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione). Using confocal Raman microscopy and multivariate analysis, we demonstrate the ability to spectrally resolve resonance-enhanced Raman signatures associated with astaxanthin and β-carotene along with chlorophyll fluorescence. By mathematically isolating these spectral signatures, in turn, it is possible to locate these species independent of each other in living cells of H. pluvialis in various stages of the life cycle. Chlorophyll emission was found only in the chloroplast whereas astaxanthin was identified within globular and punctate regions of the cytoplasmic space. Moreover, we found evidence for β-carotene to be co-located with both the chloroplast and astaxanthin in the cytosol. These observations imply that β-carotene is a precursor for astaxanthin and the synthesis of astaxanthin occurs outside the chloroplast. Our work demonstrates the broad utility of confocal Raman microscopy to resolve spectral signatures of highly similar chromophores in living cells. © 2011 Collins et al.

More Details

Influence of anisotropy on thermal boundary conductance at solid interfaces

Physical Review B - Condensed Matter and Materials Physics

Hopkins, Patrick E.; Beechem, Thomas E.; Duda, John C.; Hattar, Khalid M.; Ihlefeld, Jon F.; Rodriguez, Mark A.; Piekos, Edward S.

We investigate the role of anisotropy on interfacial transport across solid interfaces by measuring the thermal boundary conductance from 100 to 500 K across Al/Si and Al/sapphire interfaces with different substrate orientations. The measured thermal boundary conductances show a dependency on substrate crystallographic orientation in the sapphire samples (trigonal conventional cell) but not in the silicon samples (diamond cubic conventional cell). The change in interface conductance in the sapphire samples is ascribed to anisotropy in the Brillouin zone along the principal directions defining the conventional cell. This leads to resultant phonon velocities in the direction of thermal transport that vary nearly 40% based on crystallographic direction. © 2011 American Physical Society.

More Details

Enabling graphene nanoelectronics

Ohta, Taisuke; McCarty, Kevin F.; Beechem, Thomas E.; Pan, Wei; Biedermann, Laura B.; Ross III, Anthony J.; Gutierrez, Carlos

Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

More Details

Reduction in thermal boundary conductance due to proton implantation in silicon and sapphire

Applied Physics Letters

Hopkins, Patrick E.; Hattar, Khalid M.; Beechem, Thomas E.; Ihlefeld, Jon F.; Medlin, Douglas L.; Piekos, Edward S.

We measure the thermal boundary conductance across Al/Si and Al/ Al 2 O3 interfaces that are subjected to varying doses of proton ion implantation with time domain thermoreflectance. The proton irradiation creates a major reduction in the thermal boundary conductance that is much greater than the corresponding decrease in the thermal conductivities of both the Si and Al2 O3 substrates into which the ions were implanted. Specifically, the thermal boundary conductances decrease by over an order of magnitude, indicating that proton irradiation presents a unique method to systematically decrease the thermal boundary conductance at solid interfaces. © 2011 American Institute of Physics.

More Details
Results 1–50 of 63
Results 1–50 of 63