Publications

20 Results
Skip to search filters

Spatially resolved monitoring of aqueous CdS nanoparticle synthesis in a microreactor

2005 AIChE Spring National Meeting, Conference Proceedings

Sounart, Thomas L.; Bickel, Jessica E.; Tallant, David T.; Matzke, Carolyn M.; Voigt, James A.; Michalske, Terry A.

The synthesis of cysteine-capped CdS quantum dot nanocrystals (CdS-cys) between two interdiffusing reagent streams in a continuous flow microfluidic reactor was investigated. Spatially resolved fluorescence imaging and spectroscopy of the microreactor at various reactant concentrations and flow rates was used to study nucleation and growth of these particles. The laminar flow of the impinging streams allowed for controlled diffusional mixing of the reacting cadmium and sulfide ions at the boundary between the two solutions, while the capping agent was present in one or both of the solutions in excess. The results show that the photoluminescence of these particles grown under these microfluidic conditions differs from those grown in batch reactors.

More Details

MEMS in microfluidic channels

Sounart, Thomas L.; Okandan, Murat O.; Ashby, Carol I.; Michalske, Terry A.

Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

More Details

Frequency-dependent electrostatic actuation in microfluidic MEMS

Proposed for publication in Journal of Microelectromechanical Systems.

Sounart, Thomas L.; Sounart, Thomas L.; Michalske, Terry A.; Zavadil, Kevin R.

Electrostatic actuators exhibit fast response times and are easily integrated into microsystems because they can be fabricated with standard IC micromachining processes and materials. Although electrostatic actuators have been used extensively in 'dry' MEMS, they have received less attention in microfluidic systems probably because of challenges such as electrolysis, anodization, and electrode polarization. Here we demonstrate that ac drive signals can be used to prevent electrode polarization, and thus enable electrostatic actuation in many liquids, at potentials low enough to avoid electrochemistry. We measure the frequency response of an interdigitated silicon comb-drive actuator in liquids spanning a decade of dielectric permittivities and four decades of conductivity, and present a simple theory that predicts the characteristic actuation frequency. The analysis demonstrates the importance of the native oxide on silicon actuator response, and suggests that the actuation frequency can be shifted by controlling the thickness of the oxide. For native silicon devices, actuation is predicted at frequencies less than 10 MHz, in electrolytes of ionic strength up to 100 mmol/L, and thus electrostatic actuation may be feasible in many bioMEMS and other microfluidic applications.

More Details

Center for Integrated Nanotechnologies (CINT) : science-base for future integrated systems

Michalske, Terry A.; Michalske, Terry A.

The National Nanotechnology Initiative (NNI), first announced in 1999 has grown into a major U. S. investment involving twenty federal agencies. As a lead federal agency, the Department of Energy (DOE) is developing a network of Nanoscale Science and Research Centers (NSRC). NSRCs will be highly collaborative national user facilities associated with DOE National Laboratories where university, laboratory, and industrial researchers can work together to advance nanoscience and technology. The Center for Integrated Nanotechnologies (CINT), which is operated jointly by Sandia National Laboratories and Alamos National Laboratory, has a unique technical vision focused on integrating scientific disciplines and expertise across multiple length scales going all the way from the nano world to the world around us. It is often said that nanotechnology has the potential to change almost everything we do. However, this prophecy will only come to pass when we learn to couple nanoscale functions into the macroscale world. Obviously coupling the nano- and micro-length scales is an important piece of this challenge and one can site many examples where the performance of existing microdevices has been improved by adding nanotechnology. Examples include low friction coatings for MEMS and compact light sources for ChemLab spectrometers. While this approach has produced significant benefit, we believe that the true potential will be realized only when device architectures are designed 'from the nanoscale up', allowing nanoscale function to drive microscale performance.

More Details

Investigation of Nanoscience Technologies: Final Report

Burns, A.R.; Michalske, Terry A.

The intention of this project was to collaborate with Harvard University in the general area of nanoscale structures, biomolecular materials and their application in support of Sandia's MEMS technology. The expertise at Harvard was crucial in fostering these fundamentally interdisciplinary developments. Areas that were of interest included: (1) nanofabrication that exploits traditional methods (from Si technology) and developing new methods; (2) self-assembly of organic and inorganic systems; (3) assembly and dynamics of membranes and microfluidics; (4) study of the hierarchy of scales in assembly; (5) innovative imaging methods; and (6) hard (engineering)/soft (biological) interfaces. Specifically, we decided to work with Harvard to design and construct an experimental test station to measure molecular transport through single nanopores. The pore may be of natural origin, such as a self-assembled bacterial protein in a lipid bilayer, or an artificial structure in silicon or silicon nitride.

More Details

Adhesion hysteresis of silane coated microcantilevers

Acta Materials

De Boer, Maarten P.; Knapp, J.A.; Michalske, Terry A.

The authors have developed a new experimental approach for measuring hysteresis in the adhesion between micromachined surfaces. By accurately modeling the deformations in cantilever beams that are subject to combined interfacial adhesion and applied electrostatic forces, they determine adhesion energies for advancing and receding contacts. They draw on this new method to examine adhesion hysteresis for silane coated micromachined structures and found significant hysteresis for surfaces that were exposed to high relative humidity (RH) conditions. Atomic force microscopy studies of these surfaces showed spontaneous formation of agglomerates that they interpreted as silages that have irreversibly transformed from uniform surface layers at low RH to isolated vesicles at high RH. They used contact deformation models to show that the compliance of these vesicles could reasonably account for the adhesion hysteresis that develops at high RH as the surfaces are forced into contact by an externally applied load.

More Details

Nanotechnology: Promises and challenges for tomorrow

Romig, Alton D.; Michael, Joseph R.; Michalske, Terry A.

Nanotechnology is based on the ability to create and utilize materials, devices and systems through control of the matter at the nanometer scale. If successful, nanotechnology is expected to lead to broad new technological developments. The efficiency of energy conversion can be increased through the use of nanostructured materials with enhanced magnetic, light emission or wear resistant properties. Energy generation using nanostructured photovoltaics or nanocluster driven photocatalysis could fundamentally change the economic viability of renewable energy sources. In addition, the ability to imitate molecular processes found in living organisms may be key to developing highly sensitive and discriminating chemical and biological sensors. Such sensors could greatly expand the range of medical home testing as well as provide new technologies to counter the spread of chemical and biological weapons. Even the production of chemicals and materials could be revolutionized through the development of molecular reactors that can promote low energy chemical pathways for materials synthesis. Although nanotechnologies hold great promise, significant scientific challenges must be addressed before they can convert that promise into a reality. A key challenge in nanoscience is to understand how nano-scale tailoring of materials can lead to novel and enhanced functions. The authors' laboratory, for example, is currently making broad contributions in this area by synthesizing and exploring nanomaterials ranging from layered structures for electronics/photonics to novel nanocrystalline catalysts. They are even adapting functions from biological molecules to synthesize new forms of nanostructured materials.

More Details

Chemical Vapor Deposition of Fluoroalkylsilane Monolayer Films for Adhesion Control in Microelectromechanical Systems

Journal of Vacuum Science Technology B

Mayer, T.M.; De Boer, Maarten P.; Shinn, Neal D.; Clews, Peggy J.; Michalske, Terry A.

We have developed a new process for applying a hydrophobic, low adhesion energy coating to microelectromechanical (MEMS) devices. Monolayer films are synthesized from tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) and water vapor in a low-pressure chemical vapor deposition process at room temperature. Film thickness is self-limiting by virtue of the inability of precursors to stick to the fluorocarbon surface of the film once it has formed. We have measured film densities of {approx}3 molecules nm{sup 2} and film thickness of {approx}1 nm. Films are hydrophobic, with a water contact angle >110{sup o}. We have also incorporated an in-situ downstream microwave plasma cleaning process, which provides a clean, reproducible oxide surface prior to film deposition. Adhesion tests on coated and uncoated MEMS test structures demonstrate superior performance of the FOTS coatings. Cleaned, uncoated cantilever beam structures exhibit high adhesion energies in a high humidity environment. An adhesion energy of 100 mJ m{sup -2} is observed after exposure to >90% relative humidity. Fluoroalkylsilane coated beams exhibit negligible adhesion at low humidity and {<=} 20 {micro}J m{sup -2} adhesion energy at >90% relative humidity. No obvious film degradation was observed for films exposed to >90% relative humidity at room temperature for >24 hr.

More Details

Fundamental mechanisms of micromachine reliability

De Boer, Maarten P.; Sniegowski, Jeffry J.; Knapp, J.A.; Redmond, James M.; Michalske, Terry A.; Mayer, Thomas K.

Due to extreme surface to volume ratios, adhesion and friction are critical properties for reliability of Microelectromechanical Systems (MEMS), but are not well understood. In this LDRD the authors established test structures, metrology and numerical modeling to conduct studies on adhesion and friction in MEMS. They then concentrated on measuring the effect of environment on MEMS adhesion. Polycrystalline silicon (polysilicon) is the primary material of interest in MEMS because of its integrated circuit process compatibility, low stress, high strength and conformal deposition nature. A plethora of useful micromachined device concepts have been demonstrated using Sandia National Laboratories' sophisticated in-house capabilities. One drawback to polysilicon is that in air the surface oxidizes, is high energy and is hydrophilic (i.e., it wets easily). This can lead to catastrophic failure because surface forces can cause MEMS parts that are brought into contact to adhere rather than perform their intended function. A fundamental concern is how environmental constituents such as water will affect adhesion energies in MEMS. The authors first demonstrated an accurate method to measure adhesion as reported in Chapter 1. In Chapter 2 through 5, they then studied the effect of water on adhesion depending on the surface condition (hydrophilic or hydrophobic). As described in Chapter 2, they find that adhesion energy of hydrophilic MEMS surfaces is high and increases exponentially with relative humidity (RH). Surface roughness is the controlling mechanism for this relationship. Adhesion can be reduced by several orders of magnitude by silane coupling agents applied via solution processing. They decrease the surface energy and render the surface hydrophobic (i.e. does not wet easily). However, only a molecular monolayer coats the surface. In Chapters 3-5 the authors map out the extent to which the monolayer reduces adhesion versus RH. They find that adhesion is independent of RH up to a threshold value, depending on the coating chemistry. The mechanism for the adhesion increase beyond this threshold value is that the coupling agent reconfigures from a surface to a bulk phase (Chapter 3). To investigate the details of how the adhesion increase occurs, the authors developed the mechanics for adhesion hysteresis measurements. These revealed that near-crack tip compression is the underlying cause of the adhesion increase (Chapter 4). A vacuum deposition chamber for silane coupling agent deposition was constructed. Results indicate that vapor deposited coatings are less susceptible to degradation at high RH (Chapter 5). To address issues relating to surfaces in relative motion, a new test structure to measure friction was developed. In contrast to other surface micromachined friction test structures, uniform apparent pressure is applied in the frictional contact zone (Chapter 6). The test structure will enable friction studies over a large pressure and dynamic range. In this LDRD project, the authors established an infrastructure for MEMS adhesion and friction metrology. They then characterized in detail the performance of hydrophilic and hydrophobic films under humid conditions, and determined mechanisms which limit this performance. These studies contribute to a fundamental understanding for MEMS reliability design rules. They also provide valuable data for MEMS packaging requirements.

More Details
20 Results
20 Results