Design of high voltage ceramic and glass capacitors for pulse forming networks
Abstract not provided.
Abstract not provided.
Abstract not provided.
This study is focused on describing the desorbed off gases due to heating of the AgIMordenite (MOR) produced at ORNL for iodine (I2) gas capture from nuclear fuel aqueous reprocessing. In particular, the interest is for the incorporation of the AgI-MOR into a waste form, which might be the Sandia developed, low temperature sintering, Bi-Si oxide based, Glass Composite Material (GCM). The GCM has been developed as a waste form for the incorporation any oxide based getter material. In the case where iodine may be released during the sintering process of the GCM, additional Ag flake is added as further insurance in total iodine capture and retention. This has been the case for the incorporated ORNL developed AgIMOR. Thermal analysis studies were carried out to determine off gasing processes of ORNL AgIMOR. Independent of sample size, ~7wt% of total water is desorbed by 225°C. This includes both bulk surface and occluded water, and are monitored as H2O and OH. Of that total, ~5.5wt% is surface water which is removed by 125°C, and 1.5wt% is occluded (in zeolite pore) water. Less than ~1 wt% total water continues to desorb, but is completely removed by 500°C. Above 300°C, the detectable remaining desorbing species observed are iodine containing compounds, including I and I2.
This study encompasses initial scoping tests on the incorporation of a novel iodine loaded getter material into the Sandia developed low temperature sintering glass ceramic material (GCM) waste form. In particular, we studied the PNNL Ag-I-Aerogel. Optical microscopy indicates inhomogenous samples based on particle sizes and variations in color (AgI vs Ag/AgO on silica). TGA/MS data when heated in air indicates loss of iodine and organics (CO2) between 250-450°C a total of ~15wt% loss, with additional / small iodine loss when during 550°C hold for 1 hr. TGA/MS data when heated in N2 indicates less organic and slightly less iodine loss below 550°C, with no loss of iodine in 550°C 1 hour hold. Furthermore, a substantial mass loss of sulfur containing compounds is observed (m/e of 34 and 36) between 150 – 550°C in both air and N2 sintering atmospheres. In an effort to capture iodine lost to volatilization during heating (at temps below glass sintering temperature of 550°C), we added 5 wt% Ag flake to the AgIaerogel. Resulting data indicates the iodine is retained with the addition of the Ag flake, resulting in only a small iodine loss (< 1wt%) at ~350°C. No method of curtailing loss of sulfur containing compounds due to heating was successful in this scoping study.
Abstract not provided.
Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 – 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR and 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550°C for 1hr. They were cooled slowly (1°C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm³. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Herein, we study the durability of the Sandia Bi-Si oxide Glass Composite Material (GCM) waste form when formulated with different weight percent levels of AgI-MOR. The post-iodine exposure AgI-MOR material was provided to SNL by ORNL. Durability results for the GCM fabricated with 22 and 25% AgI-MOR indicate releases of Ag and I at the same low rates as 15% AgI-MOR GCM, and by the same mechanism. Iodine and Ag release is controlled by the low solubility of an amorphous, hydrated silver iodide, not by the surface-controlled dissolution of I2- loaded Ag-Mordenite. Based on this data, we postulate that much higher loading levels of AgIMOR are probable in this GCM waste form, and limits will govern by retention of mechanical integrity of the GCM versus the solubility of silver iodide.
Journal of Physical Chemistry C
Radionuclide 137Cs is one of the major fission products that dominate heat generation in spent fuels over the first 300 years. A durable waste form for 137Cs that decays to 137Ba is needed to minimize its environmental impact. Aluminosilicate pollucite CsAlSi 2O6 is selected as a model waste form to study the decay-induced structural effects. Whereas Ba-containing precipitates are not present in charge-balanced Cs0.9Ba0.05AlSi 2O6, they are found in Cs0.9Ba 0.1AlSi2O6 and identified as monoclinic Ba 2Si3O8. Pollucite is susceptible to electron-irradiation-induced amorphization. The threshold density of electronic energy deposition for amorphization was determined to be ∼235 keV/nm 3. Pollucite can be readily amorphized under F+ ion irradiation at 673 K. A significant amount of Cs diffusion and release from the amorphized pollucite occurs during the irradiation. However, cesium is immobile in the crystalline structure under He+ ion irradiation at room temperature. The critical temperature for amorphization is not higher than 873 K under F+ ion irradiation. If kept at or above 873 K all the time, the pollucite structure is unlikely to be amorphized; Cs diffusion and release are improbable. A general discussion regarding pollucite as a potential waste form is provided in this report. © 2014 American Chemical Society.
The minimum amount of silver flake required to prevent loss of I{sub 2} during sintering in air for a SNL Glass Composite Material (GCM) Waste Form containing AgI-MOR (ORNL, 8.7 wt%) was determined to be 1.1 wt% Ag. The final GCM composition prior to sintering was 20 wt% AgI-MOR, 1.1 wt% Ag, and 80 wt% Bi-Si oxide glass. The amount of silver flake needed to suppress iodine loss was determined using thermo gravimetric analysis with mass spectroscopic off-gas analysis. These studies found that the ratio of silver to AgI-MOR required is lower in the presence of the glass than without it. Therefore an additional benefit of the GCM is that it serves to inhibit some iodine loss during processing. Alternatively, heating the AgI-MOR in inert atmosphere instead of air allowed for densified GCM formation without I{sub 2} loss, and no necessity for the addition of Ag. The cause of this behavior is found to be related to the oxidation of the metallic Ag to Ag{sup +} when heated to above ~300{degrees}C in air. Heating rate, iodine loading levels and atmosphere are the important variables that determine AgI migration and results suggest that AgI may be completely incorporated into the mordenite structure by the 550{degrees}C sintering temperature.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Materials Research
Abstract not provided.
Industrial and Engineering Chemistry Research
The safe handling of reprocessed fuel addresses several scientific goals, especially when considering the capture and long-term storage of volatile radionuclides that are necessary during this process. Despite not being a major component of the offgas, radioiodine (I 2) is particularly challenging, because it is a highly mobile gas and 129I is a long-lived radionuclide (1.57 × 10 7 years). Therefore, its capture and sequestration is of great interest on a societal level. Herein, we explore novel routes toward the effective capture and storage of iodine. In particular, we report on the novel use of a new class of porous solid-state functional materials (metal-organic frameworks, MOFs), as high-capacity adsorbents of molecular iodine. We further describe the formation of novel glass-composite material (GCM) waste forms from the mixing and sintering of the I 2-containing MOFs with Bi-Zn-O low-temperature sintering glasses and silver metal flakes. Our findings indicate that, upon sintering, a uniform monolith is formed, with no evidence of iodine loss; iodine is sequestered during the heating process by the in situ formation of AgI. Detailed materials characterization analysis is presented for the GCMs. This includes powder X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM-EDS), thermal analysis (thermogravimetric analysis (TGA)), and chemical durability tests including aqueous leach studies (product consistency test (PCT)), with X-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS) of the PCT leachate. © 2011 American Chemical Society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
13th International High-Level Radioactive Waste Management Conference 2011, IHLRWMC 2011
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Ceramic Transactions
Radioactive iodine, 129I, a component of spent nuclear fuel, is of particular concern due to its extremely long half-life, its potential mobility in the environment and its effects on human health. In the spent fuel reprocessing scheme under consideration, the 129I is released in gaseous form and collected using Ag-loaded zeolites such as Ag-mordenite. The 129I can react with the Ag to form insoluble AgI. We have investigated the use of low temperature-sintering glass powders mixed with either AgI or AgI-zeolite to produce dense waste forms that can be processed at 500°C, where AgI volatility is low. These mixtures can contain up to 20 wt% crushed AgI-mordenite or up to 50 wt% AgI. Both types of waste forms were found to have the high iodine leach resistance in these initial studies.
Abstract not provided.
Abstract not provided.
Development of high energy density dielectrics with low temperature coefficients of capacitance that are systems integrable are needed for extreme environment, defense and automotive applications. The synthesis of high purity chemically prepared Ca(Zr,Ti)O3 powders is described and has resulted in the lowering of conventional firing temperatures by over 100 C. Direct write aerosol spray deposition techniques have been used to fabricate high quality single layer and multilayer capacitors from these powders. The dielectric constants of the direct write capacitors are equivalent to those of fired bulk ceramics. Our presentation emphasizes the synthesis, phase evolution and microstructure development that has resulted in dielectrics with energy densities in excess of 3 J/cm3 with less than 1% change in dielectric constant over a 200 C temperature range.
The safe handling of reprocessed fuel addresses several scientific goals, especially when considering the capture and long-term storage of volatile radionuclides that are necessary during this process. Despite not being a major component of the off-gas, radioiodine (I{sub 2}) is particularly challenging, because it is a highly mobile gas and {sup 129}I is a long-lived radionuclide (1.57 x 10{sup 7} years). Therefore, its capture and sequestration is of great interest on a societal level. Herein, we explore novel routes toward the effective capture and storage of iodine. In particular, we report on the novel use of a new class of porous solid-state functional materials (metal-organic frameworks, MOFs), as high-capacity adsorbents of molecular iodine. We further describe the formation of novel glass-composite material (GCM) waste forms from the mixing and sintering of the I{sub 2}-containing MOFs with Bi-Zn-O low-temperature sintering glasses and silver metal flakes. Our findings indicate that, upon sintering, a uniform monolith is formed, with no evidence of iodine loss; iodine is sequestered during the heating process by the in situ formation of AgI. Detailed materials characterization analysis is presented for the GCMs. This includes powder X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM-EDS), thermal analysis (thermogravimetric analysis (TGA)), and chemical durability tests including aqueous leach studies (product consistency test (PCT)), with X-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS) of the PCT leachate.
We report on the host-guest interactions between metal-organic frameworks (MOFs) with various profiles and highly polarizable molecules (iodine), with emphasis on identifying preferential sorption sites in these systems. Radioactive iodine 129I, along with other volatile radionuclides (3H, 14C, Xe and Kr), represents a relevant component in the off-gas resulted during nuclear fuel reprocessing. Due to its very long half-life, 15.7 x 106 years, and potential health risks in humans, its efficient capture and long-term storage is of great importance. The leading iodine capture technology to date is based on trapping iodine in silver-exchanged mordenite. Our interests are directed towards improving existent capturing technologies, along with developing novel materials and alternative waste forms. Herein we report the first study that systematically monitors iodine loading onto MOFs, an emerging new class of porous solid-state materials. In this context, MOFs are of particular interest as: (i) they serve as ideal high capacity storage media, (ii) they hold potential for the selective adsorption from complex streams, due to their high versatility and tunability. This work highlights studies on both newly developed in our lab, and known highly porous MOFs that all possess distinct characteristics (specific surface area, pore volume, pore size, and dimension of the window access to the pore). The materials were loaded to saturation, where elemental iodine was introduced from solution, as well as from vapor phase. Uptakes in the range of {approx}125-150 wt% I2 sorbed were achieved, indicating that these materials outperform all other solid adsorbents to date in terms of overall capacity. Additionally, the loaded materials can be efficiently encapsulated in stable waste forms, including as low temperature sintering glasses. Ongoing studies are focused on gathering qualitative information with respect to localizing the physisorbed iodine molecules within the frameworks: X-ray single-crystal analyses, in conjunction with high pressure differential pair distribution function (d-PDF) studies aimed to identify preferential sites in the pores, and improve MOFs robustness. Furthermore, durability studies on the iodine loaded MOFs and subsequent waste forms include thermal analyses, SEM/EDS elemental mapping, and leach-durability testing. We anticipate for this in-depth analysis to further aid the design of advanced materials, capable to address major hallmarks: safe capture, stability and durability over extended timeframes.
Journal of the American Ceramic Society
Abstract not provided.
Abstract not provided.
Abstract not provided.
Reprocessing nuclear fuel releases gaseous radio-iodine containing compounds which must be captured and stored for prolonged periods. Ag-loaded mordenites are the leading candidate for scavenging both organic and inorganic radioiodine containing compounds directly from reprocessing off gases. Alternately, the principal off-gas contaminant, I2, and I-containing acids HI, HIO3, etc. may be scavenged using caustic soda solutions, which are then treated with bismuth to put the iodine into an insoluble form. Our program is focused on using state-of-the-art materials science technologies to develop materials with high loadings of iodine, plus high long-term mechanical and thermal stability. In particular, we present results from research into two materials areas: (1) zeolite-based separations and glass encapsulation, and (2) in-situ precipitation of Bi-I-O waste forms. Ag-loaded mordenite is either commercially available or can be prepared via a simple Ag+ ion exchange process. Research using an Ag+-loaded Mordenite zeolite (MOR, LZM-5 supplied by UOP Corp.) has revealed that I2 is scavenged in one of three forms, as micron-sized AgI particles, as molecular (AgI)x clusters in the zeolite pores and as elemental I2 vapor. It was found that only a portion of the sorbed iodine is retained after heating at 95o C for three months. Furthermore, we show that even when the Ag-MOR is saturated with I2 vapor only roughly half of the silver reacted to form stable AgI compounds. However, the Iodine can be further retained if the AgI-MOR is then encapsulated into a low temperature glass binder. Follow-on studies are now focused on the sorption and waste form development of Iodine from more complex streams including organo-iodine compounds (CH3I). Bismuth-Iodate layered phases have been prepared from caustic waste stream simulant solutions. They serve as a low cost alternative to ceramics waste forms. Novel compounds have been synthesized and solubility studies have been completed using competing groundwater anions (HCO3-, Cl- and SO42-). Distinct variations in solubility were found that related to the structures of the materials.
American Ceramics Society Transactions
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Fine powders of calcium zirconate (CaZrO{sub 3}, CZ) and calcium titanate (CaTiO{sub 3}, CT) were synthesized using a nonaqueous oxalate co-precipitation route from Ca(NO{sub 3}){sub 2}{center_dot}4 H{sub 2}O and group(IV) n-butoxides (Ti(OBu{sup n}){sub 4} or Zr(OBu{sup n}){sub 4}). Several reaction conditions and batch sizes (2-35 g) were explored to determine their influence on final particle size, morphology, and phase. Characterization of the as-prepared oxalate precursors, oven dried oxalate precursors (60-90 C), and calcined powders (635-900 C) were analyzed with TGA/DTA, XRD, TEM, and SEM. Densification and sintering studies on pressed CZ pellets at 1375 and 1400 C were also performed. Through the developed oxalate co-precipitation route, densification temperatures for CZ were lowered by 125 C from the 1500 C firing temperature required for conventional mixed oxide powders. Low field electrical tests of the CZ pellets indicated excellent dielectric properties with dielectric constants of {approx}30 and a dissipation factor of 0.0004 were measured at 1 kHz.
Glasses filled with ceramic or metallic powders have been developed for use as seals for solid oxide fuel cells (SOFC's) as part of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Program. The composites of glass (alkaline earth-alumina-borate) and powders ({approx}20 vol% of yttria-stabilized zirconia or silver) were shown to form seals with SOFC materials at or below 900 C. The type and amount of powder were adjusted to optimize thermal expansion to match the SOFC materials and viscosity. Wetting studies indicated good wetting was achieved on the micro-scale and reaction studies indicated that the degree of reaction between the filled glasses and SOFC materials, including spinel-coated 441 stainless steel, at 750 C is acceptable. A test rig was developed for measuring strengths of seals cycled between room temperature and typical SOFC operating temperatures. Our measurements showed that many of the 410 SS to 410 SS seals, made using silver-filled glass composites, were hermetic at 0.2 MPa (2 atm.) of pressure and that seals that leaked could be resealed by briefly heating them to 900 C. Seal strength measurements at elevated temperature (up to 950 C), measured using a second apparatus that we developed, indicated that seals maintained 0.02 MPa (0.2 atm.) overpressures for 30 min at 750 C with no leakage. Finally, the volatility of the borate component of sealing glasses under SOFC operational conditions was studied using weight loss measurements and found by extrapolation to be less than 5% for the projected SOFC lifetime.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The sintering behavior of Sandia chem-prep high field varistor materials was studied using techniques including in situ shrinkage measurements, optical and scanning electron microscopy and x-ray diffraction. A thorough literature review of phase behavior, sintering and microstructure in Bi{sub 2}O{sub 3}-ZnO varistor systems is included. The effects of Bi{sub 2}O{sub 3} content (from 0.25 to 0.56 mol%) and of sodium doping level (0 to 600 ppm) on the isothermal densification kinetics was determined between 650 and 825 C. At {ge} 750 C samples with {ge}0.41 mol% Bi{sub 2}O{sub 3} have very similar densification kinetics, whereas samples with {le}0.33 mol% begin to densify only after a period of hours at low temperatures. The effect of the sodium content was greatest at {approx}700 C for standard 0.56 mol% Bi{sub 2}O{sub 3} and was greater in samples with 0.30 mol% Bi{sub 2}O{sub 3} than for those with 0.56 mol%. Sintering experiments on samples of differing size and shape found that densification decreases and mass loss increases with increasing surface area to volume ratio. However, these two effects have different causes: the enhancement in densification as samples increase in size appears to be caused by a low oxygen internal atmosphere that develops whereas the mass loss is due to the evaporation of bismuth oxide. In situ XRD experiments showed that the bismuth is initially present as an oxycarbonate that transforms to metastable {beta}-Bi{sub 2}O{sub 3} by 400 C. At {approx}650 C, coincident with the onset of densification, the cubic binary phase, Bi{sub 38}ZnO{sub 58} forms and remains stable to >800 C, indicating that a eutectic liquid does not form during normal varistor sintering ({approx}730 C). Finally, the formation and morphology of bismuth oxide phase regions that form on the varistors surfaces during slow cooling were studied.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.
This proposal focuses on the synthesis and characterization of ''tunable'' perovskite ceramics with resulting controlled strength and temperature of dielectric constants and/or with ionic conductivity. Traditional methods of synthesis involve high temperature oxide mixing and baking. We developed a new methodology of synthesis involving the (1) low temperature hydrothermal synthesis of metastable porous phases with ''tuned'' stoichiometry, and element types, and then (2) low temperature heat treatment to build exact stoichiometry perovskites, with the desired vacancy concentrations. This flexible pathway can lead to compositions and structures not attainable by conventional methods. During the course of this program, a series of Na-Nb perovskites were synthesized by calcining and collapsing microporous Sandia Octahedral Molecular Sieve (SOMS) phases. These materials were studied by various characterization techniques and conductivity measurements to better delineate stability and stoichiometry/bulk conductivity relationships. The conductivity can be altered by changing the concentration and type of the substituting framework cation(s) or by ion exchange of sodium. To date, the Na{sub 0.9}Mg{sub 0.1}Nb{sub 0.8}Ti{sub 0.2}O{sub 3-{delta}} shows the best conductivity.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Materials in the La{sub 0.1}Sr{sub 0.9}Co{sub 1-y}MnyO{sub 3-{delta}} (LSCM) family are potentially useful as ceramic membranes for high-temperature oxygen separations. A series of LSCM samples was synthesized by solid state methods and characterized by powder X-ray diffraction, thermogravimetric analysis, and four-probe conductivity. The materials were indexed in the cubic Pm-3m space group. TGA data implied that LSCM can reversibly absorb and desorb oxygen versus temperature and partial oxygen pressure, while powder diffraction data showed that the material maintained the cubic perovskite structure. Preliminary four-probe conductivity measurements signify p-type semiconducting behavior.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Microsystem Technologies
Metal and ceramic micro-components with ∼10 μm features were fabricated by molding nano-powder-binder mixtures in micro-molds produced from LiGA-formed masters and then sintering to achieve the desired density and properties. The mechanical properties of the metals nickel and 316L stainless steel were measured in tension using miniature dog bone shaped, micro-molded test specimens. The sintering temperature controlled yield stress (YS), the ultimate tensile strength (UTS) and the ductility of the nickel with the YS and the UTS decreasing and the ductility increasing with increasing sintering temperature. For the stainless steel, the YS was nearly 400 MPa, UTS was 650 MPa and the ductility was 3%. The mechanical properties of aluminum oxide ceramics were determined using 4-point bending on miniature micro-molded bend bars. The average modulus of rupture (MOR) was 260 MPa. Careful measurements were made of the dimensional tolerance of the micro-molded parts both before and after sintering using automated optical metrology. The variability in the dimensions of a sintered SS gear after sintering was <3 μm. Finally microscopic examination of the micromolded components indicated that the final grain size was generally less than 1 μm with minimal residual porosity.
ACS Division of Fuel Chemistry, Preprints
Efficient and environmentally sound methods of producing hydrogen are of great importance to the US as it progresses toward the H2 economy. Current studies are investigating the use of high temperature systems driven by nuclear and/or solar energy to drive thermochemical cycles for H2 production. These processes are advantageous since they do not produce greenhouse gas emissions that are a result of hydrogen production from electrolysis or hydrocarbon reformation. Double-substituted perovskites, A1-xSrxCo1-yBy O3-δ (A = Y, La; B = Fe, Ni, Cr, Mn) were synthesized for use as ceramic high-temperature oxygen separation membranes. The materials have promising oxygen sorption properties and were structurally robust under varying temperatures and atmospheres. Post-TGA powder diffraction patterns revealed no structural changes after the temperature and gas treatments, demonstrating the robustness of the material. The most promising material was the La0.1Sr0.9Co1-xMnx O3-δ perovskite. The oxygen sorption properties increased with increasing Mn doping.
Abstract not provided.
Abstract not provided.
All ceramics and powder metals, including the ceramics components that Sandia uses in critical weapons components such as PZT voltage bars and current stacks, multi-layer ceramic MET's, ahmindmolybdenum & alumina cermets, and ZnO varistors, are manufactured by sintering. Sintering is a critical, possibly the most important, processing step during manufacturing of ceramics. The microstructural evolution, the macroscopic shrinkage, and shape distortions during sintering will control the engineering performance of the resulting ceramic component. Yet, modeling and prediction of sintering behavior is in its infancy, lagging far behind the other manufacturing models, such as powder synthesis and powder compaction models, and behind models that predict engineering properties and reliability. In this project, we developed a model that was capable of simulating microstructural evolution during sintering, providing constitutive equations for macroscale simulation of shrinkage and distortion during sintering. And we developed macroscale sintering simulation capability in JAS3D. The mesoscale model can simulate microstructural evolution in a complex powder compact of hundreds or even thousands of particles of arbitrary shape and size by 1. curvature-driven grain growth, 2. pore migration and coalescence by surface diffusion, 3. vacancy formation, grain boundary diffusion and annihilation. This model was validated by comparing predictions of the simulation to analytical predictions for simple geometries. The model was then used to simulate sintering in complex powder compacts. Sintering stress and materials viscous module were obtained from the simulations. These constitutive equations were then used by macroscopic simulations for simulating shrinkage and shape changes in FEM simulations. The continuum theory of sintering embodied in the constitutive description of Skorohod and Olevsky was combined with results from microstructure evolution simulations to model shrinkage and deformation during. The continuum portion is based on a finite element formulation that allows 3D components to be modeled using SNL's nonlinear large-deformation finite element code, JAS3D. This tool provides a capability to model sintering of complex three-dimensional components. The model was verified by comparing to simulations results published in the literature. The model was validated using experimental results from various laboratory experiments performed by Garino. In addition, the mesoscale simulations were used to study anisotropic shrinkage in aligned, elongated powder compacts. Anisotropic shrinkage occurred in all compacts with aligned, elongated particles. However, the direction of higher shrinkage was in some cases along the direction of elongation and in other cases in the perpendicular direction depending on the details of the powder compact. In compacts of simple-packed, mono-sized, elongated particles, shrinkage was higher in the direction of elongation. In compacts of close-packed, mono-sized, elongated particles and of elongated particles with a size and shape distribution, the shrinkage was lower in the direction of elongation. We also explored the concept of a sintering stress tensor rather than the traditional sintering stress scalar concept for the case of anisotropic shrinkage. A thermodynamic treatment of this is presented. A method to calculate the sintering stress tensor is also presented. A user-friendly code that can simulate microstructural evolution during sintering in 2D and in 3D was developed. This code can run on most UNIX platforms and has a motif-based GUI. The microstructural evolution is shown as the code is running and many of the microstructural features, such as grain size, pore size, the average grain boundary length (in 2D) and area (in 3D), etc. are measured and recorded as a function of time. The overall density as the function of time is also recorded.
Abstract not provided.
Abstract not provided.
Sintering is one of the oldest processes used by man to manufacture materials dating as far back as 12,000 BC. While it is an ancient process, it is also necessary for many modern technologies such a multilayered ceramic packages, wireless communication devices, and many others. The process consists of thermally treating a powder or compact at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by bonding together of the particles. During sintering, the individual particles bond, the pore space between particles is eliminated, the resulting component can shrinks by as much as 30 to 50% by volume, and it can distort its shape tremendously. Being able to control and predict the shrinkage and shape distortions during sintering has been the goal of much research in material science. And it has been achieved to varying degrees by many. The object of this project was to develop models that could simulate sintering at the mesoscale and at the macroscale to more accurately predict the overall shrinkage and shape distortions in engineering components. The mesoscale model simulates microstructural evolution during sintering by modeling grain growth, pore migration and coarsening, and vacancy formation, diffusion and annihilation. In addition to studying microstructure, these simulation can be used to generate the constitutive equations describing shrinkage and deformation during sintering. These constitutive equations are used by continuum finite element simulations to predict the overall shrinkage and shape distortions of a sintering crystalline powder compact. Both models will be presented. Application of these models to study sintering will be demonstrated and discussed. Finally, the limitations of these models will be reviewed.
Abstract not provided.
Abstract not provided.
The use of oxidized metal powders in mechanical shock or crush safety enhancers in nuclear weapons has been investigated. The functioning of these devices is based on the remarkable electrical behavior of compacts of certain oxidized metal powders when subjected to compressive stress. For example, the low voltage resistivity of a compact of oxidized tantalum powder was found to decrease by over six orders of magnitude during compaction between 1 MPa, where the thin, insulating oxide coatings on the particles are intact, to 10 MPa, where the oxide coatings have broken down along a chain of particles spanning the electrodes. In this work, the behavior of tantalum and aluminum powders was investigated. The low voltage resistivity during compaction of powders oxidized under various conditions was measured and compared. In addition, the resistivity at higher voltages and the dielectric breakdown strength during compaction were also measured. A key finding was that significant changes in the electrical properties persist after the removal of the stress so that a mechanical shock enhancer is feasible. This was verified by preliminary shock experiments. Finally, conceptual designs for both types of enhancers are presented.
An integrated approach, combining the continuum theory of sintering and Potts model based mesostructure evolution analysis, is used to solve the problem of bi-layered structure sintering. Two types of bi-layered structures are considered: layers of the same material with different initial porosity, and layers of two different materials. The effective sintering stress for the bi-layer powder sintering is derived, both at the meso- and the macroscopic levels. Macroscopic shape distortions and spatial distributions of porosity are determined as functions of the dimensionless specific time of sintering. The effect of the thickness of the layers on shrinkage, warpage, and pore-grain structure is studied. Ceramic ZnO powders are employed as a model experimental system to assess the model predictions.
A microfabrication process is described that provides for the batch realization of miniature rare earth based permanent magnets. Prismatic geometry with features as small as 5 microns, thicknesses up through several hundred microns and with submicron tolerances may be accommodated. The processing is based on a molding technique using deep x-ray lithography as a means to generate high aspect-ratio precision molds from PMMA (poly methyl methacrylate) used as an x-ray photoresist. Subsequent molding of rare-earth permanent magnet (REPM) powder combined with a thermosetting plastic binder may take place directly in the PMMA mold. Further approaches generate an alumina form replicated from the PMMA mold that becomes an intermediate mold for pressing higher density REPM material and allows for higher process temperatures. Maximum energy products of 3--8 MGOe (Mega Gauss Oersted, 1 MGOe = 100/4{pi} kJ/m{sup 3}) are obtained for bonded isotropic forms of REPM with dimensions on the scale of 100 microns and up to 23 MGOe for more dense anisotropic REPM material using higher temperature processing. The utility of miniature precision REPMs is revealed by the demonstration of a miniature multipole brushless DC motor that possesses a pole-anisotropic rotor with dimensions that would otherwise prohibit multipole magnetization using a multipole magnetizing fixture at this scale. Subsequent multipole assembly also leads to miniaturized Halbach arrays, efficient magnetic microactuators, and mechanical spring-like elements which can offset miniaturized mechanical scaling behavior.