Publications

16 Results
Skip to search filters

A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for decades

Whalen, Scott A.; Moorman, Matthew W.; Siegal, Michael P.; Aselage, Terrence L.; Frederick, Scott K.

We have built and tested a miniaturized, thermoelectric power source that can provide in excess of 450 {micro}W of power in a system size of 4.3cc, for a power density of 107 {micro}W/cc, which is denser than any system of this size previously reported. The system operates on 150mW of thermal input, which for this system was simulated with a resistive heater, but in application would be provided by a 0.4g source of {sup 238}Pu located at the center of the device. Output power from this device, while optimized for efficiency, was not optimized for form of the power output, and so the maximum power was delivered at only 41mV. An upconverter to 2.7V was developed concurrently with the power source to bring the voltage up to a usable level for microelectronics.

More Details

Structural variants in attempted hetero-epitaxial growth of B12As2 on 6H-SiC (0001)

Proposed for publication in the Journal of Materials Research.

Michael, Joseph R.; Aselage, Terrence L.; Kotula, Paul G.

Boron sub-arsenide, B{sub 12}As{sub 2}, is based on twelve-atom clusters of boron atoms and two-atom As-As chains. By contrast, SiC is a tetrahedrally bonded covalent semiconductor. Despite these fundamental differences, the basal plane hexagonal lattice constant of boron sub-arsenide is twice that of SiC. This coincidence suggests the possibility of heteroepitaxial growth of boron sub-arsenide films on properly aligned SiC. However, there are a variety of incommensurate alignments by which heteroepitaxial growth of B{sub 12}As{sub 2} on (0001) 6H-SiC can occur. In this study, we first used geometrical crystallographic considerations to describe the possible arrangements of B{sub 12}As{sub 2} on (0001) 6H-SiC. We identified four translational and two rotational variants. We then analyzed electron backscattered diffraction and transmission electron microscopy images for evidence of distinct domains of such structural variants. Micron-scale regions with each of the two possible rotational alignments of B{sub 12}As{sub 2} icosahedra with the SiC surface were seen. On a finer length scale (100-300 nm) within these regions, boron-rich boundaries were found, consistent with those between pairs of the four equivalent translational variants associated with a two-to-one lattice match. Boron-carbide reaction layers were also observed at interfaces between SiC and B{sub 12}As{sub 2}.

More Details

A boron carbide based solid-state neutron detector

Proposed for publication in the Journal of Applied Physics.

Aselage, Terrence L.

Its large cross section for absorption of thermal neutrons has made {sup 10}B a frequent candidate for use in neutron detectors. Here a boron-carbide-based thermoelectric device for the detection of a thermal-neutron flux is proposed. The very high melting temperatures and the radiation tolerance of boron carbides made them suitable for use within hostile environments (e.g., within nuclear reactors). The large anomalous Seebeck coefficients of boron carbides are exploited in proposing a relatively sensitive detector of the local heating that follows the absorption of a neutron by a {sup 10}B nucleus in a boron carbide.

More Details

Conductivities and Seebeck Coefficients of Boron Carbides: ''Softening-Bipolaron'' Hopping

Physical Review B

Aselage, Terrence L.; Emin, David E.; McCready, Steven S.

The most conspicuous feature of boron carbides' electronic transport properties is their having both high carrier densities and large Seebeck coefficients. The magnitudes and temperature dependencies of the Seebeck coefficients are consistent with large contributions from softening bipolarons: singlet bipolarons whose stabilization is significantly affected by their softening of local vibrations. Boron carbides' high carrier densities, small activation energies for hopping ({approx} 0.16 eV), and anomalously large Seebeck coefficients combine with their low, glass-like thermal conductivities to make them unexpectedly efficient high-temperature thermoelectrics.

More Details
16 Results
16 Results