Publications

Results 1–50 of 109
Skip to search filters

Evaluation of Engineered Barrier Systems (FY2022 Report)

Matteo, Edward N.; Dewers, Thomas D.; Hadgu, Teklu H.; Taylor, Autumn D.

This report describes research and development (R&D) activities conducted during Fiscal Year 2022 (FY22) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. The R&D team represented in this report consists of individuals from Sandia National Laboratories, Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), and Vanderbilt University. EBS R&D work also leverages international collaborations to ensure that the DOE program is active and abreast of the latest advances in nuclear waste disposal.

More Details

M4 Summary of EBS International

Hadgu, Teklu H.; Dewers, Thomas D.; Matteo, Edward N.

Thermal-Hydrologic-Mechanical (THM) modeling of DECOVALEX 2023, Task C has continued. In FY2022 the simulations have progressed to Step 1, which is on 3-D modeling of the full-scale emplacement experiment at the Mont Terri Underground Rock Laboratory (Nagra, 2019). This report summarizes progress in Thermal-Hydrologic (TH) modeling of Step 1. THM modeling will be documented in future reports.

More Details

Results of Re-evaluation of FEPs Related to Implementing the ABD Glass Program

Price, Laura L.; Alsaed, Halim A.; Prouty, Jeralyn L.; Rogers, Ralph D.; Ebert, William E.; Hadgu, Teklu H.; Mariner, Paul M.

More Details

RANGERS: State of the Art and Science on Engineered Barrier Systems in Salt Formations

Simo, Eric K.; Herold, Philipp H.; Keller, Andreas K.; Lommerzheim, Andree L.; Matteo, Edward N.; Hadgu, Teklu H.; Jayne, Richard S.; Kuhlman, Kristopher L.; Mills, Melissa M.

The construction of deep geological repositories (DGR) in salt formations requires penetrating through naturally sealing geosphere layers. While the emplaced nuclear waste is primarily protected by the containment-providing rock zone (CRZ), technical barriers are required, for example during handling. For closure geotechnical barriers seal the repository along the accesses against water or solutions from outside and the possible emission paths for radionuclides contained inside. As these barriers must ensure maintenance-free function on a long-term basis, they typically comprise a set of specialized elements with diversified functions that may be used redundantly. The effects of the individual elements are coordinated so that they are collectively referred to as the Engineered Barrier System (EBS).

More Details

Evaluation of Engineered Barrier Systems FY21 Report

Matteo, Edward N.; Dewers, Thomas D.; Hadgu, Teklu H.; Bell, Nelson S.; Kotula, Paul G.; Kruichak, Jessica N.; Sanchez-Hernandez, Bernadette S.; Casilas, M.C.; Kolesnichenko, Igor K.; Caporuscio, F.A.; Sauer, K.B.; Rock, M.J.; Zheng, L.Z.; Borglin, S.B.; Lammers, L.L.; Whittaker, M.W.; Zarzycki, P.Z.; Fox, P.F.; Chang, C.C.; Subramanian, N.S.; Nico, P.N.; Tournassat, C.T.; Chou, C.C.; Xu, H.X.; Singer, E.S.; Steefel, C.I.; Peruzzo, L.P.; Wu, Y.W.

This report describes research and development (R&D) activities conducted during fiscal year 2021 (FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.

More Details

FY2021 Status Report on the Computing Systems for the Yucca Mountain Project TSPA-LA Models and Testing of Selected Process Models

Hadgu, Teklu H.; Lopez, Carlos M.; Wallace, Michael G.; Reynolds, John T.

Sandia National Laboratories continued evaluation of the total system performance assessment (TSPA) for License Application (LA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. The FY21 task included continued operation of the cluster; maintenance of the TSPA-LA models (with GoldSim 9.60.300); continued assessment of the status of the Infiltration Model; (a process model that feeds the TSP -LA) and preliminary assessments of the Unsaturated Zone Flow Model and the Saturated Zone Flow and Transport Model Abstraction (process models that feed the TSPA-LA). The 2014 cluster and supporting software systems are currently fully operational to support TSPA-LA type analyses.

More Details

FY21 Report on Activities for EBS International

Matteo, Edward N.; Dewers, Thomas D.; Hadgu, Teklu H.

This report summarizes the FY21 Activities for EBS International Collaborations Work Package. The international collaborations work packages aim to leverage knowledge, expertise, and tools from the international nuclear waste community, as deemed relevant according to SFWST “roadmap” priorities. This report describes research and development (R&D) activities conducted during fiscal year 2021(FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). It fulfills the SFWST Campaign deliverable M4SF- 21SN010308062. The R&D activities described in this report focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc. Sandia National Laboratories is participating in THM modeling in the international projects EBS Task Force and DECOVALEX 2023. EBS Task Force, Task 11 is on modeling of laboratory-scale High Temperature Column Test conducted at Lawrence Berkeley National Laboratory. DECOVALEX 2023, Task C is on THM modeling of the full-scale emplacement experiment (FE experiment) at the Mont Terri Underground Rock Laboratory, Switzerland. This report summarizes Sandia’s progress in the modeling studies of DECOVALEX 2023, Task C. Modeling studies related to the High Temperature Column Test will be documented in future reports.

More Details

Evaluation of Engineered Barrier Systems FY20 Report

Matteo, Edward N.; Dewers, Thomas D.; Gomez, Steven P.; Hadgu, Teklu H.; Zheng, L.Z.; Lammers, L.L.; Fox, P.F.; Chang, C.C.; Xu, H.X.; Borglin, S.B.; Whittaker, M.W.; Chou, C.C.; Tournassat, N.T.; Subramanian, S.S.; Wu, Y.W.; Nico, P.N.; Gilbert, B.G.; Kneafsey, T.K.; Caporuscio, F.A.; Sauer, K.B.; Rock, M.J.; Kalintsev, A.K.; Migdissov, A.M.; Alcorn, C.A.; Buck, E.C.; Yu, X-Y Y.; Yao, J.Y.; Son, J.S.; Reichers, S.L.; Klein-BenDavid, O.K.; Bar-nes, G.B.; Meeusen, J.C.; Gruber, C.G.; Steen, M S.; Brown, K.G.; Delapp, R.D.; Taylor, A.J.; Ayers, J.A.; Kosson, D.S.

This report describes research and development (R&D) activities conducted during fiscal year 2020 (FY20) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc. The FY20 EBS activities involved not only modeling and analysis work, but experimental work as well. Despite delays to some planned activities due to COVID-19 precautions, progress was made during FY20 in multiple research areas and documented in this report as follows: (1) EBS Task Force: Task 9/FEBEX Modeling Final Report: Thermo-Hydrological Modeling with PFLOTRAN, (2) preliminary sensitivity analysis for the FEBEX in-situ heater test, (3) cement-carbonate rock interaction under saturated conditions: from laboratory to modeling, (4) hydrothermal experiments, (5) progress on investigating the high temperature behavior of the uranyl-carbonate complexes, (6) in-situ and electrochemical work for model validation, (7) investigation of the impact of high temperature on EBS bentonite with THMC modeling, (8) sorption and diffusion experiments on bentonite, (9) chemical controls on montmorillonite structure and swelling pressure, (10) microscopic origins of coupled transport processes in bentonite, (11) understanding the THMC evolution of bentonite in FEBEX-DP—coupled THMC modeling, (12) modeling in support of HotBENT, an experiment studying the effects of high temperatures on clay buffers/near-field, and (13) high temperature heating and hydration column test on bentonite.

More Details

EBS Task Force: Task 9/FEBEX Modeling Final Report: Thermo-Hydrological Modeling with PFLOTRAN

Hadgu, Teklu H.; Dewers, Thomas D.; Gomez, Steven P.; Matteo, Edward N.

This report outlines Sandia National Laboratories modeling studies applied to Stage 1 and Stage 2 of the Full-scale Engineered Barriers Experiment in Crystalline Host Rock (FEBEX) in situ test for the SKB EBS Task Force Task 9. The FEBEX test was a full-scale test conducted over ~18 years at the Grimsel, Switzerland Underground Research Laboratory (URL) managed by NAGRA. It involved emplacing simulated waste packages, in the form of welded cylindrical heaters, inside a tunnel in crystalline granitic rock and surrounded by a bentonite barrier and cement plug. Sensors emplaced within the bentonite monitored the wetting-up, heating, and drying out of the bentonite barrier, and the large resulting data set provides an excellent opportunity for validation of multiphysics Thermal-Hydrological (TH), Thermal-Hydrologic-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) modeling approaches for underground nuclear waste storage and the performance of engineered bentonite barriers. The present status of the EBS Task Force is finalizing Task 9, which follows years of modeling studies of the FEBEX test, by many notable modeling teams (Gens et al., 2009; Sanchez et al. 2010; 2012; Samper et al., 2018). These modeling studies generally use two-dimensional axisymmetric meshes, ignoring threedimensional effects, gravity and asymmetric wetting and dry out of the bentonite engineered barrier. This study investigates these effects with use of the PFLOTRAN THC code with massively parallel computational methods in modeling FEBEX Stage 1 and Stage 2 results. The PFLOTRAN numerical code is an open source, state-of-the-art, massively parallel subsurface flow and reactive transport code operating in a high-performance computing environment (Hammond et al., 2014). Section 2 describes the applied partial differential equations describing mass, momentum and energy balance used in this study, considerations derived by assuming phase equilibrium between gas and liquid phases, constitutive equations for granite, cement plug, and bentonite domains, and specific approaches for use inthe PFLOTRAN code. Section 3 describes the geometry, meshing, and model set-up. Section 4 describes modeling results, Section 5 compares modeling results to field testing data, and Section 6 gives conclusions. The Appendix provides detailed information required by the EBSTask Force for final reporting.

More Details

Evaluation of Engineered Barrier Systems (FY19 Report)

Matteo, Edward N.; Hadgu, Teklu H.; Zheng, L.Z.; Xu, H.X.; Wainwright, H.W.; Subramanian, N.S.; Voltolini, M.V.; Lammers, L.L.; Gilbert, B.G.; MacDowell, A.M.; Nichol, J.N.; Lisabeth, H.L.; van Hartesveldt, N.F.; Migdissov, A.M.; Strzelecki, A.C.S.; Xu, H.X.; CAproruscio, F.C.; Roback, R.R.; White, J.W.; Buck, E.C.; Yu, X-Y Y.; Yao, J.Y.; Reilly, D.D.; Son, J.S.; Chatterjee, S.D.; McNamara, B.K.; Ilton, E.S.; Claret, F.C.; Gaboreau, S.G.; Ermakova, D.E.; Gabitov, R.G.

This report describes research and development (R&D) activities conducted during fiscal year 2019 (FY19) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Eneregy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Genreric Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.The FY19 EBS activities involved not only modeling and analysis work, but experimental work as well. The report documents the FY19 progress made in seven different research areas as follows: (1) thermal analysis for the disposal of dual purpose canisters (DPCs) in sedimentary host rock using the semianalytical method, (2) tetravalent uranium solubility and speciation, (3) modeling of high temperature, thermal-hydrologic-mechanical-chemical (THMC) coupled processes, (4) integration of coupled thermalhydrologic- chemical (THC) model with GDSA using a Reduced-Order Model, (5) studying chemical controls on montmorillonite structure and swelling pressure, (6) transmission x-ray microscope for in-situ nanotomography of bentonite and shale, and (7) in-situ electrochemical testing of uranium dioxide under anoxic conditions. The R&D team consisted of subject matter experts from Sandia National Laboratories, Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL), the Bureau de Recherches Géologiques et Minières (BRGM), the University of California Berkeley, and Mississippi State University. In addition, the EBS R&D work leverages international collaborations to ensure that the DOE program is active and abreast of the latest advances in nuclear waste disposal. For example, the FY19 work on modeling coupled THMC processes at high temperatures relied on the bentonite properties from the Full-scale Engineered Barrier EXperiment (FEBEX) Field Test conducted at the Grimsel Test Site in Switzerland. Overall, significant progress has been made in FY19 towards developing the modeling tools and experimental capabilities needed to investigate the performance of EBS materials and the associated interactions in the drift and the surrounding near-field environment under a variety of conditions including high temperature regimes.

More Details

Determination of factors influencing radionuclide transport in fractured crystalline rock

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Hadgu, Teklu H.; Kalinina, Elena A.; Wang, Yifeng

Numerical modeling of flow and transport through fractured crystalline rock was conducted to identify major factors that affect migration of radionuclides from a high-level nuclear waste repository. The study was based on data collected at the Mizunami Underground Research Laboratory (URL) in Japan. Distributions of fracture parameters were used to generate a selected number of DFN realizations. For each realization the DFN was upscaled to a continuum mesh to provide permeability and porosity fields. The upscaled permeability and porosity fields were then used to study flow and transport through the fractured rock in a site-scale domain. For the present study the focus is on the effect of domain size and on upscaling of DFN to a continuum system. Simulation results and analysis on various upscaling and boundary condition assumptions are presented.

More Details

FY 18 Status Report on the Computing Systems for the Yucca Mountain Project TSPA-LA Models and Inventory of Software used for Process Models

Hadgu, Teklu H.; Appel, Gordon J.; Garland, Jason P.

Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014), Hadgu et al. (2015) and Hadgu and Appel (2016), and Hadgu et al. (2017). The TSPA computing hardware (2014 server cluster -CL2014) and storage system described in Hadgu et al. (2015) were used for the current analysis. One floating license of Gold Sim with Versions 9.60.300, 10.5, 11.1 and 12.0 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA-type analysis on the server cluster. The FY18 task included developing an inventory of software used for the Yucca Mountain Project process models and preliminary assessment of status of the software; enhancing security of the cluster and setting a backup system. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis. 3 ACKNOWLEDGEMENTS The authors would like to express their gratitude to Tito Bonano (8840) and Kevin McMahon (8842) for their technical interest and programmatic support. The authors would also like to thank David Sassani (8842) for technical review of the report. 4

More Details

Evaluation of Engineered Barrier Systems in the Disposition of Spent Nuclear Fuel

Matteo, Edward N.; Hadgu, Teklu H.; Zheng, Liange Z.; Xu, Hao X.; Fox, Patricia F.; Nico, Peter N.; Birkholzer, Jens T.; Caporuscio, Florie C.; Sauer, Kirsten B.; Rock, M.J.; Houser, L.M.

This document is a summary of the R&D activities associated with the Engineered Barrier Systems Work Package. Multiple facets of Engineered Barrier Systems (EBS) research were examined in the course of FY18 activities. This report is focused on delvering an update on the status and progress of modelling tools and experimental methods, both of which are essential to understanding and predicting long-term repository performance as part of the safety case. Specifically, the work described herein aims to improve understanding of EBS component evolution and interactions. Utlimately, the EBS Work Package is working towards producing process models for distinct processes that can either be incorporated into performance assessment (PA), or provide critical information for implementing better contraints on barrier performance The main objective of this work is that the models being developed and refined will either be implemented directly into the Genreric Disposal System Analysis platform (GDSA), or can otherwise be indirectly linked to the performance assessment by providing improved bounding conditions. In either the case, the expectation is that validated modelling tools will be developed that provide critical input to the safety case. This report covers a range of topics — modelling topics include: thermal-hydrologic-mechnicalchemical coupling (THMC) in buffer materials, comparisons of modelling approaches to optimize computational efficiency, thermal analysis for EBS/repository design, benchmarking of thermal analysis tools, and a preliminary study of buffer re-saturation processess. Experimental work reported, includes: chemical evolution and sorption behavior of clay-based buffer materials and high-pressure, high temperature studies of EBS material interactions. The work leverages international collaborations to ensure that the DOE program is active and abreast of the latest advances in nuclear waste disposal. This includes participation in the HotBENT Field Test, aimed at understanding near-field effects on EBS materials at temperatures above 100 °C, and the analysis of data and characterization of samples from the FEBEX Field Test. Both the FEBEX and HotBENT Field Tests utilize/utilized the Grimsel Test Site in Switzerland, which is situated in a granite host rock. These tests offer the opportunity to understand near field evolution of bentonite buffer at in situ conditions for either a relatively long timescale (18 years for FEBEX) or temperature above 100 °C (HotBENT). Overall, this report provides in depth descriptions of tools and capabilities to investigate nearfield performance of EBS materials (esp. bentonite buffer), as well as tools for drift-scale thermal and thermal-hydrologic analysis critical to EBS and repository design. For a more detailed description of work contained herein, please see Section 10 ("Conclusions") of this document.

More Details

US Sections Prepared for Future NEA Crystalline Club (CRC) Report on Status of R&D in CRC Countries Investigating Deep Geologic Disposal in Crystalline Rock

Mariner, Paul M.; Stein, Emily S.; Kalinina, Elena A.; Hadgu, Teklu H.; Jove Colon, Carlos F.; Basurto, Eduardo B.

U.S. knowledge in deep geologic disposal in crystalline rock is advanced and growing. U.S. status and recent advances related to crystalline rock are discussed throughout this report. Brief discussions of the history of U.S. disposal R&D and the accumulating U.S. waste inventory are presented in Sections 3.x.2 and 3.x.3. The U.S. repository concept for crystalline rock is presented in Section 3.x.4. In Chapters 4 and 5, relevant U.S. research related to site characterization and repository safety functions are discussed. U.S. capabilities for modelling fractured crystalline rock and performing probabilistic total system performance assessments are presented in Chapter 6.

More Details
Results 1–50 of 109
Results 1–50 of 109