Publications

109 Results
Skip to search filters

Evaluation of Engineered Barrier Systems (FY2022 Report)

Matteo, Edward N.; Dewers, Thomas D.; Hadgu, Teklu H.; Taylor, Autumn D.

This report describes research and development (R&D) activities conducted during Fiscal Year 2022 (FY22) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. The R&D team represented in this report consists of individuals from Sandia National Laboratories, Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), and Vanderbilt University. EBS R&D work also leverages international collaborations to ensure that the DOE program is active and abreast of the latest advances in nuclear waste disposal.

More Details

M4 Summary of EBS International

Hadgu, Teklu H.; Dewers, Thomas D.; Matteo, Edward N.

Thermal-Hydrologic-Mechanical (THM) modeling of DECOVALEX 2023, Task C has continued. In FY2022 the simulations have progressed to Step 1, which is on 3-D modeling of the full-scale emplacement experiment at the Mont Terri Underground Rock Laboratory (Nagra, 2019). This report summarizes progress in Thermal-Hydrologic (TH) modeling of Step 1. THM modeling will be documented in future reports.

More Details

Results of Re-evaluation of FEPs Related to Implementing the ABD Glass Program

Price, Laura L.; Alsaed, Halim A.; Prouty, Jeralyn L.; Rogers, Ralph D.; Ebert, William E.; Hadgu, Teklu H.; Mariner, Paul M.

More Details

RANGERS: State of the Art and Science on Engineered Barrier Systems in Salt Formations

Simo, Eric K.; Herold, Philipp H.; Keller, Andreas K.; Lommerzheim, Andree L.; Matteo, Edward N.; Hadgu, Teklu H.; Jayne, Richard S.; Kuhlman, Kristopher L.; Mills, Melissa M.

The construction of deep geological repositories (DGR) in salt formations requires penetrating through naturally sealing geosphere layers. While the emplaced nuclear waste is primarily protected by the containment-providing rock zone (CRZ), technical barriers are required, for example during handling. For closure geotechnical barriers seal the repository along the accesses against water or solutions from outside and the possible emission paths for radionuclides contained inside. As these barriers must ensure maintenance-free function on a long-term basis, they typically comprise a set of specialized elements with diversified functions that may be used redundantly. The effects of the individual elements are coordinated so that they are collectively referred to as the Engineered Barrier System (EBS).

More Details

Evaluation of Engineered Barrier Systems FY21 Report

Matteo, Edward N.; Dewers, Thomas D.; Hadgu, Teklu H.; Bell, Nelson S.; Kotula, Paul G.; Kruichak, Jessica N.; Sanchez-Hernandez, Bernadette S.; Casilas, M.C.; Kolesnichenko, Igor K.; Caporuscio, F.A.; Sauer, K.B.; Rock, M.J.; Zheng, L.Z.; Borglin, S.B.; Lammers, L.L.; Whittaker, M.W.; Zarzycki, P.Z.; Fox, P.F.; Chang, C.C.; Subramanian, N.S.; Nico, P.N.; Tournassat, C.T.; Chou, C.C.; Xu, H.X.; Singer, E.S.; Steefel, C.I.; Peruzzo, L.P.; Wu, Y.W.

This report describes research and development (R&D) activities conducted during fiscal year 2021 (FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.

More Details

FY2021 Status Report on the Computing Systems for the Yucca Mountain Project TSPA-LA Models and Testing of Selected Process Models

Hadgu, Teklu H.; Lopez, Carlos M.; Wallace, Michael G.; Reynolds, John T.

Sandia National Laboratories continued evaluation of the total system performance assessment (TSPA) for License Application (LA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. The FY21 task included continued operation of the cluster; maintenance of the TSPA-LA models (with GoldSim 9.60.300); continued assessment of the status of the Infiltration Model; (a process model that feeds the TSP -LA) and preliminary assessments of the Unsaturated Zone Flow Model and the Saturated Zone Flow and Transport Model Abstraction (process models that feed the TSPA-LA). The 2014 cluster and supporting software systems are currently fully operational to support TSPA-LA type analyses.

More Details

FY21 Report on Activities for EBS International

Matteo, Edward N.; Dewers, Thomas D.; Hadgu, Teklu H.

This report summarizes the FY21 Activities for EBS International Collaborations Work Package. The international collaborations work packages aim to leverage knowledge, expertise, and tools from the international nuclear waste community, as deemed relevant according to SFWST “roadmap” priorities. This report describes research and development (R&D) activities conducted during fiscal year 2021(FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). It fulfills the SFWST Campaign deliverable M4SF- 21SN010308062. The R&D activities described in this report focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc. Sandia National Laboratories is participating in THM modeling in the international projects EBS Task Force and DECOVALEX 2023. EBS Task Force, Task 11 is on modeling of laboratory-scale High Temperature Column Test conducted at Lawrence Berkeley National Laboratory. DECOVALEX 2023, Task C is on THM modeling of the full-scale emplacement experiment (FE experiment) at the Mont Terri Underground Rock Laboratory, Switzerland. This report summarizes Sandia’s progress in the modeling studies of DECOVALEX 2023, Task C. Modeling studies related to the High Temperature Column Test will be documented in future reports.

More Details

Evaluation of Engineered Barrier Systems FY20 Report

Matteo, Edward N.; Dewers, Thomas D.; Gomez, Steven P.; Hadgu, Teklu H.; Zheng, L.Z.; Lammers, L.L.; Fox, P.F.; Chang, C.C.; Xu, H.X.; Borglin, S.B.; Whittaker, M.W.; Chou, C.C.; Tournassat, N.T.; Subramanian, S.S.; Wu, Y.W.; Nico, P.N.; Gilbert, B.G.; Kneafsey, T.K.; Caporuscio, F.A.; Sauer, K.B.; Rock, M.J.; Kalintsev, A.K.; Migdissov, A.M.; Alcorn, C.A.; Buck, E.C.; Yu, X-Y Y.; Yao, J.Y.; Son, J.S.; Reichers, S.L.; Klein-BenDavid, O.K.; Bar-nes, G.B.; Meeusen, J.C.; Gruber, C.G.; Steen, M S.; Brown, K.G.; Delapp, R.D.; Taylor, A.J.; Ayers, J.A.; Kosson, D.S.

This report describes research and development (R&D) activities conducted during fiscal year 2020 (FY20) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc. The FY20 EBS activities involved not only modeling and analysis work, but experimental work as well. Despite delays to some planned activities due to COVID-19 precautions, progress was made during FY20 in multiple research areas and documented in this report as follows: (1) EBS Task Force: Task 9/FEBEX Modeling Final Report: Thermo-Hydrological Modeling with PFLOTRAN, (2) preliminary sensitivity analysis for the FEBEX in-situ heater test, (3) cement-carbonate rock interaction under saturated conditions: from laboratory to modeling, (4) hydrothermal experiments, (5) progress on investigating the high temperature behavior of the uranyl-carbonate complexes, (6) in-situ and electrochemical work for model validation, (7) investigation of the impact of high temperature on EBS bentonite with THMC modeling, (8) sorption and diffusion experiments on bentonite, (9) chemical controls on montmorillonite structure and swelling pressure, (10) microscopic origins of coupled transport processes in bentonite, (11) understanding the THMC evolution of bentonite in FEBEX-DP—coupled THMC modeling, (12) modeling in support of HotBENT, an experiment studying the effects of high temperatures on clay buffers/near-field, and (13) high temperature heating and hydration column test on bentonite.

More Details

EBS Task Force: Task 9/FEBEX Modeling Final Report: Thermo-Hydrological Modeling with PFLOTRAN

Hadgu, Teklu H.; Dewers, Thomas D.; Gomez, Steven P.; Matteo, Edward N.

This report outlines Sandia National Laboratories modeling studies applied to Stage 1 and Stage 2 of the Full-scale Engineered Barriers Experiment in Crystalline Host Rock (FEBEX) in situ test for the SKB EBS Task Force Task 9. The FEBEX test was a full-scale test conducted over ~18 years at the Grimsel, Switzerland Underground Research Laboratory (URL) managed by NAGRA. It involved emplacing simulated waste packages, in the form of welded cylindrical heaters, inside a tunnel in crystalline granitic rock and surrounded by a bentonite barrier and cement plug. Sensors emplaced within the bentonite monitored the wetting-up, heating, and drying out of the bentonite barrier, and the large resulting data set provides an excellent opportunity for validation of multiphysics Thermal-Hydrological (TH), Thermal-Hydrologic-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) modeling approaches for underground nuclear waste storage and the performance of engineered bentonite barriers. The present status of the EBS Task Force is finalizing Task 9, which follows years of modeling studies of the FEBEX test, by many notable modeling teams (Gens et al., 2009; Sanchez et al. 2010; 2012; Samper et al., 2018). These modeling studies generally use two-dimensional axisymmetric meshes, ignoring threedimensional effects, gravity and asymmetric wetting and dry out of the bentonite engineered barrier. This study investigates these effects with use of the PFLOTRAN THC code with massively parallel computational methods in modeling FEBEX Stage 1 and Stage 2 results. The PFLOTRAN numerical code is an open source, state-of-the-art, massively parallel subsurface flow and reactive transport code operating in a high-performance computing environment (Hammond et al., 2014). Section 2 describes the applied partial differential equations describing mass, momentum and energy balance used in this study, considerations derived by assuming phase equilibrium between gas and liquid phases, constitutive equations for granite, cement plug, and bentonite domains, and specific approaches for use inthe PFLOTRAN code. Section 3 describes the geometry, meshing, and model set-up. Section 4 describes modeling results, Section 5 compares modeling results to field testing data, and Section 6 gives conclusions. The Appendix provides detailed information required by the EBSTask Force for final reporting.

More Details

Evaluation of Engineered Barrier Systems (FY19 Report)

Matteo, Edward N.; Hadgu, Teklu H.; Zheng, L.Z.; Xu, H.X.; Wainwright, H.W.; Subramanian, N.S.; Voltolini, M.V.; Lammers, L.L.; Gilbert, B.G.; MacDowell, A.M.; Nichol, J.N.; Lisabeth, H.L.; van Hartesveldt, N.F.; Migdissov, A.M.; Strzelecki, A.C.S.; Xu, H.X.; CAproruscio, F.C.; Roback, R.R.; White, J.W.; Buck, E.C.; Yu, X-Y Y.; Yao, J.Y.; Reilly, D.D.; Son, J.S.; Chatterjee, S.D.; McNamara, B.K.; Ilton, E.S.; Claret, F.C.; Gaboreau, S.G.; Ermakova, D.E.; Gabitov, R.G.

This report describes research and development (R&D) activities conducted during fiscal year 2019 (FY19) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Eneregy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Genreric Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.The FY19 EBS activities involved not only modeling and analysis work, but experimental work as well. The report documents the FY19 progress made in seven different research areas as follows: (1) thermal analysis for the disposal of dual purpose canisters (DPCs) in sedimentary host rock using the semianalytical method, (2) tetravalent uranium solubility and speciation, (3) modeling of high temperature, thermal-hydrologic-mechanical-chemical (THMC) coupled processes, (4) integration of coupled thermalhydrologic- chemical (THC) model with GDSA using a Reduced-Order Model, (5) studying chemical controls on montmorillonite structure and swelling pressure, (6) transmission x-ray microscope for in-situ nanotomography of bentonite and shale, and (7) in-situ electrochemical testing of uranium dioxide under anoxic conditions. The R&D team consisted of subject matter experts from Sandia National Laboratories, Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL), the Bureau de Recherches Géologiques et Minières (BRGM), the University of California Berkeley, and Mississippi State University. In addition, the EBS R&D work leverages international collaborations to ensure that the DOE program is active and abreast of the latest advances in nuclear waste disposal. For example, the FY19 work on modeling coupled THMC processes at high temperatures relied on the bentonite properties from the Full-scale Engineered Barrier EXperiment (FEBEX) Field Test conducted at the Grimsel Test Site in Switzerland. Overall, significant progress has been made in FY19 towards developing the modeling tools and experimental capabilities needed to investigate the performance of EBS materials and the associated interactions in the drift and the surrounding near-field environment under a variety of conditions including high temperature regimes.

More Details

Determination of factors influencing radionuclide transport in fractured crystalline rock

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Hadgu, Teklu H.; Kalinina, Elena A.; Wang, Yifeng

Numerical modeling of flow and transport through fractured crystalline rock was conducted to identify major factors that affect migration of radionuclides from a high-level nuclear waste repository. The study was based on data collected at the Mizunami Underground Research Laboratory (URL) in Japan. Distributions of fracture parameters were used to generate a selected number of DFN realizations. For each realization the DFN was upscaled to a continuum mesh to provide permeability and porosity fields. The upscaled permeability and porosity fields were then used to study flow and transport through the fractured rock in a site-scale domain. For the present study the focus is on the effect of domain size and on upscaling of DFN to a continuum system. Simulation results and analysis on various upscaling and boundary condition assumptions are presented.

More Details

FY 18 Status Report on the Computing Systems for the Yucca Mountain Project TSPA-LA Models and Inventory of Software used for Process Models

Hadgu, Teklu H.; Appel, Gordon J.; Garland, Jason P.

Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014), Hadgu et al. (2015) and Hadgu and Appel (2016), and Hadgu et al. (2017). The TSPA computing hardware (2014 server cluster -CL2014) and storage system described in Hadgu et al. (2015) were used for the current analysis. One floating license of Gold Sim with Versions 9.60.300, 10.5, 11.1 and 12.0 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA-type analysis on the server cluster. The FY18 task included developing an inventory of software used for the Yucca Mountain Project process models and preliminary assessment of status of the software; enhancing security of the cluster and setting a backup system. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis. 3 ACKNOWLEDGEMENTS The authors would like to express their gratitude to Tito Bonano (8840) and Kevin McMahon (8842) for their technical interest and programmatic support. The authors would also like to thank David Sassani (8842) for technical review of the report. 4

More Details

Evaluation of Engineered Barrier Systems in the Disposition of Spent Nuclear Fuel

Matteo, Edward N.; Hadgu, Teklu H.; Zheng, Liange Z.; Xu, Hao X.; Fox, Patricia F.; Nico, Peter N.; Birkholzer, Jens T.; Caporuscio, Florie C.; Sauer, Kirsten B.; Rock, M.J.; Houser, L.M.

This document is a summary of the R&D activities associated with the Engineered Barrier Systems Work Package. Multiple facets of Engineered Barrier Systems (EBS) research were examined in the course of FY18 activities. This report is focused on delvering an update on the status and progress of modelling tools and experimental methods, both of which are essential to understanding and predicting long-term repository performance as part of the safety case. Specifically, the work described herein aims to improve understanding of EBS component evolution and interactions. Utlimately, the EBS Work Package is working towards producing process models for distinct processes that can either be incorporated into performance assessment (PA), or provide critical information for implementing better contraints on barrier performance The main objective of this work is that the models being developed and refined will either be implemented directly into the Genreric Disposal System Analysis platform (GDSA), or can otherwise be indirectly linked to the performance assessment by providing improved bounding conditions. In either the case, the expectation is that validated modelling tools will be developed that provide critical input to the safety case. This report covers a range of topics — modelling topics include: thermal-hydrologic-mechnicalchemical coupling (THMC) in buffer materials, comparisons of modelling approaches to optimize computational efficiency, thermal analysis for EBS/repository design, benchmarking of thermal analysis tools, and a preliminary study of buffer re-saturation processess. Experimental work reported, includes: chemical evolution and sorption behavior of clay-based buffer materials and high-pressure, high temperature studies of EBS material interactions. The work leverages international collaborations to ensure that the DOE program is active and abreast of the latest advances in nuclear waste disposal. This includes participation in the HotBENT Field Test, aimed at understanding near-field effects on EBS materials at temperatures above 100 °C, and the analysis of data and characterization of samples from the FEBEX Field Test. Both the FEBEX and HotBENT Field Tests utilize/utilized the Grimsel Test Site in Switzerland, which is situated in a granite host rock. These tests offer the opportunity to understand near field evolution of bentonite buffer at in situ conditions for either a relatively long timescale (18 years for FEBEX) or temperature above 100 °C (HotBENT). Overall, this report provides in depth descriptions of tools and capabilities to investigate nearfield performance of EBS materials (esp. bentonite buffer), as well as tools for drift-scale thermal and thermal-hydrologic analysis critical to EBS and repository design. For a more detailed description of work contained herein, please see Section 10 ("Conclusions") of this document.

More Details

US Sections Prepared for Future NEA Crystalline Club (CRC) Report on Status of R&D in CRC Countries Investigating Deep Geologic Disposal in Crystalline Rock

Mariner, Paul M.; Stein, Emily S.; Kalinina, Elena A.; Hadgu, Teklu H.; Jove Colon, Carlos F.; Basurto, Eduardo B.

U.S. knowledge in deep geologic disposal in crystalline rock is advanced and growing. U.S. status and recent advances related to crystalline rock are discussed throughout this report. Brief discussions of the history of U.S. disposal R&D and the accumulating U.S. waste inventory are presented in Sections 3.x.2 and 3.x.3. The U.S. repository concept for crystalline rock is presented in Section 3.x.4. In Chapters 4 and 5, relevant U.S. research related to site characterization and repository safety functions are discussed. U.S. capabilities for modelling fractured crystalline rock and performing probabilistic total system performance assessments are presented in Chapter 6.

More Details

Investigations of fluid flow in fractured crystalline rocks at the Mizunami Underground Research Laboratory

2nd International Discrete Fracture Network Engineering Conference, DFNE 2018

Hadgu, Teklu H.; Kalinina, E.; Wang, Yifeng; Ozaki, Y.; Iwatsuki, T.

Experimental hydrology data from the Mizunami Underground Research Laboratory in Central Japan have been used to develop a site-scale fracture model and a flow model for the study area. The discrete fracture network model was upscaled to a continuum model to be used in flow simulations. A flow model was developed centered on the research tunnel, and using a highly refined regular mesh. In this study development and utilization of the model is presented. The modeling analysis used permeability and porosity fields from the discrete fracture network model as well as a homogenous model using fixed values of permeability and porosity. The simulations were designed to reproduce hydrology of the modeling area and to predict inflow of water into the research tunnel during excavation. Modeling results were compared with the project hydrology data. Successful matching of the experimental data was obtained for simulations based on the discrete fracture network model.

More Details

Development and validation of a fracture model for the granite rocks at Mizunami Underground Research Laboratory, Japan

2nd International Discrete Fracture Network Engineering Conference, DFNE 2018

Kalinina, E.A.; Hadgu, Teklu H.; Wang, Yifeng; Ozaki, Y.; Iwatsuki, T.

The Mizunami Underground Research Laboratory is located in the Tono area (Central Japan). Its main purpose is providing a scientific basis for the research and development of technologies needed for deep geological disposal of radioactive waste in fractured crystalline rocks. The current work is focused on the experiments in the research tunnel (500 m depth). The collected tunnel and borehole data were shared with the participants of DEvelopment of COupled models and their VALidation against EXperiments (DECOVALEX) project. This study describes how these data were used to (1) develop the fracture model of the granite rocks around the research tunnel and (2) validate the model.

More Details

Roadmap for disposal of Electrorefiner Salt as Transuranic Waste

Rechard, Robert P.; Trone, Janis R.; Kalinina, Elena A.; Wang, Yifeng; Hadgu, Teklu H.; Sanchez, Lawrence C.

The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a mined repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.

More Details

FY17 Status Report on the Computing Systems for the Yucca Mountain Project TSPA-LA Models

Appel, Gordon J.; Hadgu, Teklu H.; Appel, Gordon J.; Reynolds, John T.; Garland, Jason P.

Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014), Hadgu et al. (2015) and Hadgu and Appel (2016). The TSPA computing hardware (CL2014) and storage system described in Hadgu et al. (2015) were used for the current analysis. One floating license of GoldSim with Versions 9.60.300, 10.5, 11.1 and 12.0 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA- type analysis on the server cluster. The current tasks included preliminary upgrade of the TSPA-LA from Version 9.60.300 to the latest version 12.0 and address DLL-related issues observed in the FY16 work. The model upgrade task successfully converted the Nominal Modeling case to GoldSim Versions 11.1/12. Conversions of the rest of the TSPA models were also attempted but program and operational difficulties precluded this. Upgrade of the remaining of the modeling cases and distributed processing tasks is expected to continue. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis.

More Details

Status Report on Laboratory Testing and International Collaborations in Salt

Kuhlman, Kristopher L.; Matteo, Edward N.; Hadgu, Teklu H.; Reedlunn, Benjamin R.; Sobolik, Steven R.; Mills, Melissa M.; Kirkes, Leslie D.; Xiong, Yongliang X.; Icenhower, Jonathan I.

This report is a summary of the international collaboration and laboratory work funded by the US Department of Energy Office of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D work package. This report satisfies milestone levelfour milestone M4SF-17SN010303014. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS) and bedded salt investigations (KOSINA), while the last three sections discuss laboratory work conducted on brucite solubility in brine, dissolution of borosilicate glass into brine, and partitioning of fission products into salt phases.

More Details

Thermal Analysis of Disposal of High-Level Nuclear Waste in a Generic Bedded Salt repository using the Semi-Analytical Method

Hadgu, Teklu H.; Matteo, Edward N.

An example case is presented for testing analytical thermal models. The example case represents thermal analysis of a generic repository in bedded salt at 500 m depth. The analysis is part of the study reported in Matteo et al. (2016). Ambient average ground surface temperature of 15°C, and a natural geothermal gradient of 25°C/km, were assumed to calculate temperature at the near field. For generic salt repository concept crushed salt backfill is assumed. For the semi-analytical analysis crushed salt thermal conductivity of 0.57 W/m-K was used. With time the crushed salt is expected to consolidate into intact salt. In this study a backfill thermal conductivity of 3.2 W/m-K (same as intact) is used for sensitivity analysis. Decay heat data for SRS glass is given in Table 1. The rest of the parameter values are shown below. Results of peak temperatures at the waste package surface are given in Table 2.

More Details

Cloud Computing for Complex Performance Codes

Appel, Gordon J.; Hadgu, Teklu H.; Klein, Brandon T.; Miner, John G.

This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.

More Details

Numeruical modeling of flow and transport in fractured crystalline rock

ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal

Hadgu, Teklu H.; Kalinina, Elena A.; Klise, Katherine A.; Wang, Yifeng

Disposal of high-level radioactive waste in a deep geological repository in crystalline host rock is one of the potential options for long term isolation. Characterization of the natural barrier system is an important component of the disposal option. In this study we present numerical modeling of flow and transport in fractured crystalline rock using an updated fracture continuum model (FCM). The FCM is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The original method [1] has been updated to provide capabilities that enhance representation of fractured rock. A companion paper [2] provides details of the methods for generating fracture network. In this paper use of the fracture model for the simulation of flow and transport is presented. Simulations were conducted to estimate flow and transport using an enhanced FCM method. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization FCM produced permeability and porosity fields. The PFLOTRAN code [3] was used to simulate flow and transport. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest to nuclear waste disposal modeling applied over large domains.

More Details

Conceptual representations of fracture networks and their effects on predicting groundwater transport in crystalline rocks

ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal

Kalinina, Elena A.; Hadgu, Teklu H.; Wang, Yifeng

Understanding subsurface fracture network properties at the field scale is important for a number of environmental and economic problems, including siting of spent nuclear fuel repositories, geothermal exploration, and many others. This typically encompasses large volumes of fractured rocks with the properties inferred from the observations at rock outcrops and, if available, from the measurements in exploratory boreholes, quarries, and tunnels. These data are inherently spatially limited and a stochastic model is required to extrapolate the fracture properties over the large volumes of rocks. This study (1) describes three different methods of generating fracture networks developed for use in the fractured continuum model (FCM) and (2) provides a few examples of how these methods impact the predictions of simulated groundwater transport. A detailed analysis of the transport simulations using FCM is provided in the separate paper by the same authors (to be presented at IHLRWM 2017 conference). FCM is based on the effective continuum approaches modified to represent fractures. The permeability of discrete fractures is mapped onto a regular three-dimensional grid. The x-, y-, and z effective permeability values of a grid block are calculated from the tensor. The tensor parameters are fracture aperture, dip, strike, and number of fractures in the grid block (spacing). All three methods use the fracture properties listed above to generate corresponding permeability fields. However, the assumptions and conceptual representation of fracture network from which these properties are derived are very different. The Sequential Gaussian Simulation (SGSim) method does not require an assumption regarding the fracture shape. Fracture aperture, spacing, and orientation are defined based on the field observations. Spatially correlated features (continuation of fracture in the direction of the orientation) are created using spatially correlated random numbers generated with SGSIM code. With this method an exact number of fractures cannot be generated. The Ellipsim method assumes that the fractures are two-dimensional elliptical shapes that can be described with radius and aspect ratio. The knowledge of the fracture (ellipse) radius probability distribution is required. The fracture aperture is calculated from the ellipse radius. For this option an exact number of fractures can be generated. The fracture networks generated with SGSim and Ellipsim are not necessarily connected. The connectivity is achieved indirectly via matrix permeability that can be viewed as the permeability of much smaller fractions. The discrete fracture network (DFN) generator assumes elliptical fracture shapes and requires the same parameters as Ellipsim. The principal difference is in connectivity. The DFN method creates the fracture network connectivity via an iterative process in which not connected clusters of fractures are removed. The permeability fields were generated with FCM using three different methods and the same fracture data set loosely based on the data from an existing site in granite rocks. A few examples of transport simulations are provided to demonstrate the major findings of the comparison.

More Details

Status of Progress Made Toward Preliminary Design Concepts for the Inventory in Select Media for DOE-Managed HLW/SNF

Matteo, Edward N.; Hardin, Ernest H.; Hadgu, Teklu H.; Park, Heeho D.; Rigali, Mark J.; Jove Colon, Carlos F.

As the title suggests, this report provides a summary of the status and progress for the Preliminary Design Concepts Work Package. Described herein are design concepts and thermal analysis for crystalline and salt host media. The report concludes that thermal management of defense waste, including the relatively small subset of high thermal output waste packages, is readily achievable. Another important conclusion pertains to engineering feasibility, and design concepts presented herein are based upon established and existing elements and/or designs. The multipack configuration options for the crystalline host media pose the greatest engineering challenges, as these designs involve large, heavy waste packages that pose specific challenges with respect to handling and emplacement. Defense-related Spent Nuclear Fuel (DSNF) presents issues for post-closure criticality control, and a key recommendation made herein relates to the need for special packaging design that includes neutron-absorbing material for the DSNF. Lastly, this report finds that the preliminary design options discussed are tenable for operational and post-closure safety, owing to the fact that these concepts have been derived from other published and well-studied repository designs.

More Details

Reproduction of the Yucca Mountain Project TSPA-LA Uncertainty and Sensitivity Analyses and Preliminary Upgrade of Models

Appel, Gordon J.; Hadgu, Teklu H.

Sandia National Laboratories (SNL) continued evaluation of total system performance assessment (TSPA) computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014) and Hadgu et al. (2015). The TSPA computing hardware (CL2014) and storage system described in Hadgu et al. (2015) were used for the current analysis. One floating license of GoldSim with Versions 9.60.300, 10.5 and 11.1.6 was installed on the cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software were tested and installed to support the TSPA-type analysis on the server cluster. The current tasks included verification of the TSPA-LA uncertainty and sensitivity analyses, and preliminary upgrade of the TSPA-LA from Version 9.60.300 to the latest version 11.1. All the TSPA-LA uncertainty and sensitivity analyses modeling cases were successfully tested and verified for the model reproducibility on the upgraded 2014 server cluster (CL2014). The uncertainty and sensitivity analyses used TSPA-LA modeling cases output generated in FY15 based on GoldSim Version 9.60.300 documented in Hadgu et al. (2015). The model upgrade task successfully converted the Nominal Modeling case to GoldSim Version 11.1. Upgrade of the remaining of the modeling cases and distributed processing tasks will continue. The 2014 server cluster and supporting software systems are fully operational to support TSPA-LA type analysis.

More Details

Modeling of heat extraction from variably fractured porous media in Enhanced Geothermal Systems

Geothermics

Hadgu, Teklu H.; Kalinina, Elena A.; Lowry, Thomas S.

Modeling of heat extraction in Enhanced Geothermal Systems is presented. The study builds on recent studies on the use of directional wells to improve heat transfer between doublet injection and production wells. The current study focuses on the influence of fracture orientation on production temperature in deep low permeability geothermal systems, and the effects of directional drilling and separation distance between boreholes on heat extraction. The modeling results indicate that fracture orientation with respect to the well-pair plane has significant influence on reservoir thermal drawdown. The vertical well doublet is impacted significantly more than the horizontal well doublet.

More Details

Gas Migration Project: Risk Assessment Tool and Computational Analyses to Investigate Wellbore/Mine Interactions, Secretary's Potash Area, Southeastern New Mexico

Sobolik, Steven R.; Hadgu, Teklu H.; Rechard, Robert P.

The Bureau of Land Management (BLM), US Department of the Interior has asked Sandia National Laboratories (SNL) to perform scientific studies relevant to technical issues that arise in the development of co-located resources of potash and petroleum in southeastern New Mexico in the Secretary’s Potash Area. The BLM manages resource development, issues permits and interacts with the State of New Mexico in the process of developing regulations, in an environment where many issues are disputed by industry stakeholders. The present report is a deliverable of the study of the potential for gas migration from a wellbore to a mine opening in the event of wellbore leakage, a risk scenario about which there is disagreement among stakeholders and little previous site specific analysis. One goal of this study was to develop a framework that required collaboratively developed inputs and analytical approaches in order to encourage stakeholder participation and to employ ranges of data values and scenarios. SNL presents here a description of a basic risk assessment (RA) framework that will fulfill the initial steps of meeting that goal. SNL used the gas migration problem to set up example conceptual models, parameter sets and computer models and as a foundation for future development of RA to support BLM resource development.

More Details

Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

Hardin, Ernest H.; Matteo, Edward N.; Hadgu, Teklu H.

At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

More Details

Multi-pack Disposal Concepts for Spent Fuel (Rev. 0)

Hadgu, Teklu H.; Hardin, Ernest H.; Matteo, Edward N.

At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media (Hardin et al., 2012). Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design (CRWMS M&O, 1999). Thermal analysis showed that, if “enclosed” concepts are constrained by peak package/buffer temperature, waste package capacity is limited to 4 PWR assemblies (or 9-BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems (EnergySolution, 2015). This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

More Details

DOE-Managed HLW and SNF Research: FY15 EBS and Thermal Analysis Work Package Status

Matteo, Edward N.; Hadgu, Teklu H.

This report examines the technical elements necessary to evaluate EBS concepts and perform thermal analysis of DOE-Managed SNF and HLW in the disposal settings of primary interest – argillite, crystalline, salt, and deep borehole. As the disposal design concept is composed of waste inventory, geologic setting, and engineered concept of operation, the engineered barrier system (EBS) falls into the last component of engineered concept of operation. The waste inventory for DOE-Managed HLW and SNF is closely examined, with specific attention to the number of waste packages, the size of waste packages, and the thermal output per package. As expected, the DOE-Managed HLW and SNF inventory has a much smaller volume, and hence smaller number of canisters, as well a lower thermal output, relative to a waste inventory that would include commercial spent nuclear fuel (CSNF). A survey of available data and methods from previous studies of thermal analysis indicates that, in some cases, thermo-hydrologic modeling will be necessary to appropriately address the problem. This report also outlines scope for FY16 work -- a key challenge identified is developing a methodology to effectively and efficiently evaluate EBS performance in each disposal setting on the basis of thermal analyses results.

More Details

Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole

Hadgu, Teklu H.; Stein, Emily S.; Hardin, Ernest H.; Freeze, Geoffrey A.; Hammond, Glenn E.

Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predict that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.

More Details

Parameter Uncertainty for Repository Thermal Analysis

Hardin, Ernest H.; Hadgu, Teklu H.; Greenberg, Harris G.; Dupont, Mark D.

This report is one follow-on to a study of reference geologic disposal design concepts (Hardin et al. 2011a). Based on an analysis of maximum temperatures, that study concluded that certain disposal concepts would require extended decay storage prior to emplacement, or the use of small waste packages, or both. The study used nominal values for thermal properties of host geologic media and engineered materials, demonstrating the need for uncertainty analysis to support the conclusions. This report is a first step that identifies the input parameters of the maximum temperature calculation, surveys published data on measured values, uses an analytical approach to determine which parameters are most important, and performs an example sensitivity analysis. Using results from this first step, temperature calculations planned for FY12 can focus on only the important parameters, and can use the uncertainty ranges reported here. The survey of published information on thermal properties of geologic media and engineered materials, is intended to be sufficient for use in generic calculations to evaluate the feasibility of reference disposal concepts. A full compendium of literature data is beyond the scope of this report. The term “uncertainty” is used here to represent both measurement uncertainty and spatial variability, or variability across host geologic units. For the most important parameters (e.g., buffer thermal conductivity) the extent of literature data surveyed samples these different forms of uncertainty and variability. Finally, this report is intended to be one chapter or section of a larger FY12 deliverable summarizing all the work on design concepts and thermal load management for geologic disposal (M3FT-12SN0804032, due 15Aug2012).

More Details

Conceptual Design and Requirements for Characterization and Field Test Boreholes: Deep Borehole Field Test

Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, R.J.; Heath, Jason; Herrick, Courtney G.; Jensen, Richard P.; Rigali, Mark J.; Hadgu, Teklu H.; Sevougian, Stephen D.; Birkholzer, Jens T.; Freifeld, Barry M.; Daley, Tom D.

Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test, introduced herein, is a demonstration of the DBD concept and these advances.

More Details

Reproduction of the Yucca Mountain Project TSPA-LA Model Runs using TSPA Computing Systems

Hadgu, Teklu H.; Appel, Gordon J.; Malashev, Alexey E.; Payne, Clay P.

Sandia National Laboratories (SNL) conducted an evaluation of total system performance assessment (TSPA) related computing systems for the previously considered Yucca Mountain Project (YMP). This was done to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, as directed by the National Nuclear Security Administration (NNSA), DOE 2010. This work is a continuation of the ongoing readiness evaluation reported in Lee and Hadgu (2014). The current work examined main components of the computing system identified in the previous work (Lee and Hadgu, 2014) to ensure the operational readiness of the TSPA-LA model capability on the server cluster. The TSPA computing hardware and storage system were replaced in late 2014 to maintain core capability and improve computation efficiency. One floating license of GoldSim Version 9.60.300 was installed on the upgraded cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software was tested and installed to support the TSPA-type analysis on the server cluster. All the TSPA-LA modeling cases were tested and verified for the model reproducibility on the upgraded 2014 server cluster (CL2014). All test runs were executed on multiple processors on the server cluster utilizing the GoldSim distributed processing capability, and all runs completed successfully. The model reproducibility verification was evaluated by two approaches: numerical value comparison and graphical comparison. The analysis demonstrated an excellent reproducibility of the TSPA-LA model runs on the upgraded server cluster. The 2014 server cluster and supporting software systems are fully operational to support TSPA- LA type analysis.

More Details

Cavern/Vault Disposal Concepts and Thermal Calculations for Direct Disposal of 37-PWR Size DPCs

Hardin, Ernest H.; Hadgu, Teklu H.; Clayton, Daniel J.

This report provides two sets of calculations not presented in previous reports on the technical feasibility of spent nuclear fuel (SNF) disposal directly in dual-purpose canisters (DPCs): 1) thermal calculations for reference disposal concepts using larger 37-PWR size DPC-based waste packages, and 2) analysis and thermal calculations for underground vault-type storage and eventual disposal of DPCs. The reader is referred to the earlier reports (Hardin et al. 2011, 2012, 2013; Hardin and Voegele 2013) for contextual information on DPC direct disposal alternatives.

More Details

Evaluation of the Computing Systems for Yucca Mountain Repository TSPA-LA Model Operational Readiness

Hadgu, Teklu H.; Lee, Joon L.

Sandia National Laboratories (SNL) was tasked to conduct an evaluation of the legacy computing systems of the now-closed Yucca Mountain Project (YMP) to maintain the operational readiness of the computing infrastructure (computer hardware and software) and knowledge capability for total system performance assessment (TSPA) type analysis, in the event that the License Application (LA) review by the U.S. Nuclear Regulatory Commission (NRC) is re-started and involves additional requests for information (RAIs). Six problem areas or components of the computing system were identified and subsequently resolved or improved to ensure the operational readiness of the TSPA-LA model capability on the server cluster. As part of this readiness review, the legacy TSPA computational cluster that was relocated from the SNL YMP Lead Lab Project Office in Las Vegas, Nevada to the SNL offices in Albuquerque, New Mexico was replaced with new hardware. Three floating licenses of Goldsim Version 9.60.300 were installed on the new cluster head node, and its distributed processing capability was mapped on the cluster processors. Other supporting software was tested and installed to support the TSPA- type analysis on the server cluster. TSPA-LA modeling cases were tested and verified for the model reproducibility on the current server cluster. All test runs were executed on multiple processors on the server cluster utilizing the Goldsim distributed processing capability, and all runs were completed successfully. The model reproducibility verification was evaluated by two approaches: numerical value comparison and graphical comparison, and the analysis demonstrated an excellent reproducibility of the TSPA-LA model runs on the server cluster. The current server cluster and supporting software systems are fully operational to support TSPA-LA type analysis.

More Details
109 Results
109 Results