Publications

5 Results
Skip to search filters

Delayed Fission Gamma-ray Characteristics of Th-232 U-233 U-235 U-238 and Pu-239

Lane, Taylor L.; Parma, Edward J.

Delayed fission gamma-rays play an important role in determining the time dependent ioniz- ing dose for experiments in the central irradiation cavity of the Annular Core Research Reactor (ACRR). Delayed gamma-rays are produced from both fission product decay and from acti- vation of materials in the core, such as cladding and support structures. Knowing both the delayed gamma-ray emission rate and the time-dependent gamma-ray energy spectrum is nec- essary in order to properly determine the dose contributions from delayed fission gamma-rays. This information is especially important when attempting to deconvolute the time-dependent neutron, prompt gamma-ray, and delayed gamma-ray contribution to the response of a diamond photo-conducting diode (PCD) or fission chamber in time frames of milliseconds to seconds following a reactor pulse. This work focused on investigating delayed gamma-ray character- istics produced from fission products from thermal, fast, and high energy fission of Th-232, U-233, U-235, U-238, and Pu-239. This work uses a modified version of CINDER2008, a transmutation code developed at Los Alamos National Laboratory, to model time and energy dependent photon characteristics due to fission. This modified code adds the capability to track photon-induced transmutations, photo-fission, and the subsequent radiation caused by fission products due to photo-fission. The data is compared against previous work done with SNL- modified CINDER2008 [ 1 ] and experimental data [ 2 , 3 ] and other published literature, includ- ing ENDF/B-VII.1 [ 4 ]. The ability to produce a high-fidelity (7,428 group) energy-dependent photon fluence at various times post-fission can improve the delayed photon characterization for radiation effects tests at research reactors, as well as other applications.

More Details

Reactivity effects at the Mayak Production Association, January 2, 1958 criticality accident using Serpent 2 and OpenFOAM

ICNC 2015 - International Conference on Nuclear Criticality Safety

Vega, Richard M.; Lane, Taylor L.; Miller, John A.; Schwers, Norman F.

The process nuclear criticality accident that occurred at the Mayak Production Association (Chelyabinsk-40) on January 2, 1958 involving a vessel of uranyl nitrate solution claimed the lives of three workers and left a fourth worker with continuing health problems. There are a myriad of uncertain parameters involved with this accident: What was the molarity of the solution? How much solution was in the vessel at the time of the accident? In what position was the vessel and the solution when it went critical? How important was the impact of reflection due to the workers and/or the floor? These uncertain parameters have made this accident particularly difficult to analyze in the past. This work aims to lower the uncertainty on some of these parameters. A most-probable solution composition is determined by comparing literature on the physical properties of uranyl nitrate solutions to those presented in LA-13638 [1], which describes the accident in question. Using this most-probable solution, the main contributions to the reactivity of the system and hence the eventual accident, are identified through Serpent 2 and OpenFOAM analyses. Serpent 2, a Monte Carlo software tool, is used to perform calculations of the reactivity effects of lowering the vessel toward the floor and the reactivity added by the close proximity of workers. OpenFOAM, a C++ partial differential equation solver toolkit, is used to simulate the fluid inside the vessel as the vessel is tipped. This is done by treating the solution and air inside the vessel as two incompressible, isothermal, and immiscible fluids using a volume of fluid (VoF) approach. The goal of this approach is simply to track the interface between the two fluids, and hence give an accurate description of the geometrical structure of the solution as the vessel is tipped. These two unique tools are then coupled to provide a time-dependent flow simulation to study the effect that the changing geometrical structure had on the criticality of the system, which is novel to the criticality safety field. This work provides a more accurate picture of the accident going forward. Key Words: Serpent 2, OpenFOAM, multi-physics, prompt neutron excursion, nuclear criticality safety accident, process condition change.

More Details
5 Results
5 Results