Publications

50 Results

Search results

Jump to search filters

Incorporating geological structure into sensitivity analysis of subsurface contaminant transport

Advances in Water Resources

Bigler, Lisa A.; Laforce, Tara C.; Swiler, Laura P.

Simulating subsurface contaminant transport at the kilometer-scale often entails modeling reactive flow and transport within and through complex geologic structures. These structures are typically meshed by hand and as a result geologic structure is usually represented by one or a few deterministically generated geological models for uncertainty studies of flow and transport in the subsurface. Uncertainty in geologic structure can have a significant impact on contaminant transport. In this study, the impact of geologic structure on contaminant tracer transport in a shale formation is investigated for a simplified generic deep geologic repository for permanent disposal of spent nuclear fuel. An open-source modeling framework is used to perform a sensitivity analysis study on transport of two tracers from a generic spent nuclear fuel repository with uncertain location of the interfaces between the stratum of the geologic structure. The automated workflow uses sampled realizations of the geological structural model in addition to uncertain flow parameters in a nested sensitivity analysis. Concentration of the tracers at observation points within, in line with, and downstream of the repository are used as the quantities of interest for determining model sensitivity to input parameters and geological realization. Finally, the results of the study indicate that the location of strata interfaces in the geological structure has a first-order impact on tracer transport in the example shale formation, and that this impact may be greater than that of the uncertain flow parameters.

More Details

Value of abstraction in performance assessment – When is a higher level of detail necessary?

Geomechanics for Energy and the Environment

Frank, Tanja; Becker, Dirk A.; Benbow, Steven; Bond, Alexander; Jayne, Richard; Laforce, Tara C.; Wolf, Jens

In this study, different approaches in performance assessment (PA) of the long-term safety of a repository for radioactive waste were examined. This investigation was carried out as part of the DECOVALEX-2023 project, an international collaborative effort for research and model comparison. One specific task of the DECOVALEX-2023 project was the Salt Performance Assessment Modelling task (Salt PA), which aimed at comparing various models and methods employed in the performance assessment of deep geological repositories in salt. In the context of the Salt PA task, three distinct teams from SNL (United States), Quintessa Ltd (United Kingdom), and GRS (Germany) examined the consequences of employing different levels of abstractions when modelling the repository's geometry and implementing various features and processes, using the example of a simple hypothetical repository structure in domal salt. Each team applied their own tools: PFLOTRAN (SNL), QPAC (Quintessa) and LOPOS (GRS). These differ essentially regarding numerical concept and degree of detail in the representation of the underlying physical processes. The discussion focused on when simplifications can be appropriately applied and what consequences result from them. Furthermore, it was explored when and if a higher level of fidelity in geometry or physical processes is required.

More Details

Coupled hydro-thermal flow and radionuclide transport driven by spatial variation of heat-generating radioactive wastes in shale formations

Tunnelling and Underground Space Technology

Chang, Kyung W.; Laforce, Tara C.

Deep geologic disposal of multiple nuclear waste packages with various heat sources can induce nonuniform hydro-thermal behaviors in the near-field of the repository, consequently influencing the long-term radionuclide transport in the far-field once waste form breach initiates. This study looks into three cases with variation in the spatial order of six groups of heat sources (10th, 50th, 75th, 90th, 95th, and 99th percentiles of heat outputs generated from 1,981 as-loaded dual-purpose canisters in the field site) in a shale-hosted repository with respect to the uni-directional groundwater flow (from west to east): (1) cooler waste packages from west to east, (2) hotter waste packages from west to east, and (3) hottest waste packages in the middle of the repository. Our field-scale PFLOTRAN simulation represents heat-driven multiphysics coupled mechanisms, including multiphase flow, heat transfer, and chemical/radioactive transport, and also, calculates the onset of waste form breach based on temperature-dependent canister vitality. The results from this sensitivity study will quantify the short- (less than 1 × 103 years) and long-term (up to 1 × 106 years) impacts of sporadic heat pulses from waste package on the spatio-temporal perturbation in hydro-thermal flow quantities and the rate of radionuclide transport in both near- and far-field of the repository system.

More Details

DECOVALEX-2023: Task F2-Salt Final Report

Laforce, Tara C.; Bartol, Jeroen; Becker, Dirk-Alexander; Benbow, Steven; Bond, Alexander; Dietl, Carlo R.; Frank, Tanja; Jayne, Richard; Kock, Ingo; Magri, Fabiano; Nicholas, Josh; Pekala, Marek; Stauffer, Philip H.; Stein, Emily; Stone, Jodie; Wolf, Jens

The subject of Task F of DECOVALEX-2023 concerns performance assessment modelling of radioactive waste disposal in deep mined repositories. The primary objectives of Task F are to build confidence in the models, methods, and software used for performance assessment (PA) of deep geologic nuclear waste repositories, and/or to bring to the fore additional research and development needed to improve PA methodologies. In Task F2-(salt), these objectives have been accomplished through staged development and comparison of the models and methods used by participating teams in their PA frameworks. Coupled-process submodels and deterministic simulations of the entire PA model for a reference scenario for waste disposal in domal salt have been conducted. The task specification has been updated continuously since the initiation of the project to reflect the staged development of the conceptual repository model and performance metrics.

More Details

Unsaturated alluvium disposal modelling with improved geological realism

Good, Forest T.; Laforce, Tara C.; Gross, Michael; Miller, Terry A.; Guiltinan, Eric; Swager, Katherine; Stauffer, Philip H.

This report describes specific activities in the Fiscal Year (FY) 2023 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package funded by the Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Spent Fuel and Waste Disposition (SFWD). The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several potential host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit and other tools as needed. The specific GDSA goal addressed in this report is reference case development, simulation, and analysis for the unsaturated alluvium (UZ), one of the four potential host-rocks considered by the GDSA. Further, we aim to exercise the simulation tools and methodologies under development by GDSA for PA modelling.

More Details

GDSA Repository Systems Analysis Investigations in FY 2023

Laforce, Tara C.; Basurto, Eduardo; Bigler, Lisa A.; Chang, Kyung W.; Ebeida, Mohamed; Jayne, Richard; Leone, Rosemary C.; Mariner, Paul; Sharpe, Jeff H.

This report describes specific activities in the Fiscal Year (FY) 2023 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package funded by the Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Spent Fuel and Waste Disposition (SFWD).

More Details

DECOVALEX-2023: Task F Specification (Revision 10)

Laforce, Tara C.; Jayne, Richard; Leone, Rosemary C.; Mariner, Paul; Stein, Emily; Nguyen, Son; Frank, Tanja

This report is the revised (Revision 10) Task F specification for DECOVALEX-2023. Task F is a comparison of the models and methods used in deep geologic repository performance assessment. The task proposes to develop a reference case for a mined repository in a fractured crystalline host rock (Task F1) and a reference case for a mined repository in a salt formation (Task F2). Teams may choose to participate in the comparison for either or both reference cases. For each reference case, a common set of conceptual models and parameters describing features, events, and processes that impact performance will be given, and teams will be responsible for determining how best to implement and couple the models. The comparison will be conducted in stages, beginning with a comparison of key outputs of individual process models, followed by a comparison of a single deterministic simulation of the full reference case, and moving on to uncertainty propagation and uncertainty and sensitivity analysis. This report provides background information, a summary of the proposed reference cases, and a staged plan for the analysis.

More Details

Analytical solution and parameter estimation for heat of wetting and vapor adsorption during spontaneous imbibition in tuff

International Journal of Heat and Mass Transfer

Good, Forest T.; Kuhlman, Kristopher L.; Laforce, Tara C.; Paul, Matthew J.; Heath, Jason E.

An analytical expression is derived for the thermal response observed during spontaneous imbibition of water into a dry core of zeolitic tuff. Sample tortuosity, thermal conductivity, and thermal source strength are estimated from fitting an analytical solution to temperature observations during a single laboratory test. The closed-form analytical solution is derived using Green's functions for heat conduction in the limit of “slow” water movement; that is, when advection of thermal energy with the wetting front is negligible. The solution has four free fitting parameters and is efficient for parameter estimation. Laboratory imbibition data used to constrain the model include a time series of the mass of water imbibed, visual location of the wetting front through time, and temperature time series at six locations. The thermal front reached the end of the core hours before the visible wetting front. Thus, the predominant form of heating during imbibition in this zeolitic tuff is due to vapor adsorption in dry zeolitic rock ahead of the wetting front. The separation of the wetting front and thermal front in this zeolitic tuff is significant, compared to wetting front behavior of most materials reported in the literature. This work is the first interpretation of a thermal imbibition response to estimate transport (tortuosity) and thermal properties (including thermal conductivity) from a single laboratory test.

More Details

DECOVALEX-2023 Task F Specification (Rev. 9)

Laforce, Tara C.; Jayne, Richard; Leone, Rosemary C.; Mariner, Paul; Stein, Emily; Nguyen, Son; Frank, Tanja

This report is the revised (Revision 9) Task F specification for DECOVALEX-2023. Task F is a comparison of the models and methods used in deep geologic repository performance assessment. The task proposes to develop a reference case for a mined repository in a fractured crystalline host rock (Task F1) and a reference case for a mined repository in a salt formation (Task F2). Teams may choose to participate in the comparison for either or both reference cases. For each reference case, a common set of conceptual models and parameters describing features, events, and processes that impact performance will be given, and teams will be responsible for determining how best to implement and couple the models. The comparison will be conducted in stages, beginning with a comparison of key outputs of individual process models, followed by a comparison of a single deterministic simulation of the full reference case, and moving on to uncertainty propagation and uncertainty and sensitivity analysis. This report provides background information, a summary of the proposed reference cases, and a staged plan for the analysis.

More Details

GDSA Framework Development and Process Model Integration FY2022

Mariner, Paul; Debusschere, Bert; Fukuyama, David E.; Harvey, Jacob A.; Laforce, Tara C.; Leone, Rosemary C.; Foulk, James W.; Swiler, Laura P.; Taconi, Anna M.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). A high priority for SFWST disposal R&D is disposal system modeling (Sassani et al. 2021). The SFWST Geologic Disposal Safety Assessment (GDSA) work package is charged with developing a disposal system modeling and analysis capability for evaluating generic disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2022 advances of the Geologic Disposal Safety Assessment (GDSA) performance assessment (PA) development groups of the SFWST Campaign. The common mission of these groups is to develop a geologic disposal system modeling capability for nuclear waste that can be used to assess probabilistically the performance of generic disposal options and generic sites. The modeling capability under development is called GDSA Framework (pa.sandia.gov). GDSA Framework is a coordinated set of codes and databases designed for probabilistically simulating the release and transport of disposed radionuclides from a repository to the biosphere for post-closure performance assessment. Primary components of GDSA Framework include PFLOTRAN to simulate the major features, events, and processes (FEPs) over time, Dakota to propagate uncertainty and analyze sensitivities, meshing codes to define the domain, and various other software for rendering properties, processing data, and visualizing results.

More Details

GDSA Repository Systems Analysis Investigations in FY2022

Laforce, Tara C.; Basurto, Eduardo; Chang, Kyung W.; Ebeida, Mohamed; Eymold, William; Faucett, Christopher A.; Jayne, Richard; Kucinski, Nicholas; Leone, Rosemary C.; Mariner, Paul; Foulk, James W.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in the Fiscal Year (FY) 2022 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.

More Details

FY2022 Progress on Imbibition Testing in Containment Science

Kuhlman, Kristopher L.; Good, Forest T.; Laforce, Tara C.; Heath, Jason E.

Estimation of two-phase fluid flow properties is important to understand and predict water and gas movement through the vadose zone for agricultural, hydrogeological, and engineering applications, such as for vapor-phase contaminant transport and/or containment of noble gases in the subsurface. In this second progress report of FY22, we present two ongoing activities related to imbibition testing on volcanic rock samples. We present the development of a new analytical solution predicting the temperature response observed during imbibition into dry samples, as discussed in our previous first progress report for FY22. We also illustrate the use of a multi-modal capillary pressure distribution to simulate both early- and late-time imbibition data collected on tuff core that can exhibit multiple pore types. These FY22 imbibition tests were conducted for an extended period (i.e., far beyond the time required for the wetting front to reach the top of the sample), which is necessary for parameter estimation and characterization of two different pore types within the samples.

More Details

DECOVALEX-2023, Task F Specification, Revision 8

Laforce, Tara C.; Jayne, Richard; Leone, Rosemary C.; Stein, Emily; Nguyen, Son

This report is the revised (Revision 8) Task F specification for DECOVALEX-2023. Task F is a comparison of the models and methods used in deep geologic repository performance assessment. The task proposes to develop a reference case for a mined repository in a fractured crystalline host rock and a reference case for a mined repository in a salt formation. Teams may choose to participate in the comparison for either or both of the reference cases. For each reference case, a common set of conceptual models and parameters describing features, events, and processes that impact performance will be given, and teams will be responsible for determining how best to implement and couple the models. The comparison will be conducted in stages, beginning with a comparison of key outputs of individual process models, followed by a comparison of a single deterministic simulation of the full reference case, and moving on to uncertainty propagation and uncertainty and sensitivity analysis. This report provides background information, a summary of the proposed reference cases, and a staged plan for the analysis.

More Details

Reduced-order THMC coupled simulation of nuclear waste disposal in shale

56th U.S. Rock Mechanics/Geomechanics Symposium

Chang, Kyung W.; Laforce, Tara C.; Nole, Michael A.; Stein, Emily

Thermal and hydrological behaviors of multiphase pore fluids in the presence of heat cause the near-field thermo-hydro-mechanicalchemical (THMC) coupled processes that can influence performance of geologic radioactive waste repositories. This hydro-thermal impacts may perturb the geomechanical stability of the disturbed rock zone (DRZ) surrounding the drifts in a shale-hosted deep geologic repository, which links heat/fluid flow and chemical/reactive transport between the engineered barrier system (EBS) and the host rock. This work focuses on integrating the effects of a near-field geomechanical process driven by buffer swelling into TH simulations to reduce dimensionality and improve computational efficiency. This geomechanical process can reduce the DRZ permeability, potentially influencing the rate of radionuclide transport and exchange with corrosive species in host rock groundwater that could accelerate waste package degradation. The sensitivity test with variation in host rock permeability indicates that less permeable shale retards re-saturation of the buffer, such that slower increase of swelling pressure delays reduction of DRZ permeability.

More Details

Linear and nonlinear solvers for simulating multiphase flow within large-scale engineered subsurface systems

Advances in Water Resources

Park, Heeho D.; Hammond, Glenn E.; Valocchi, Albert J.; Laforce, Tara C.

Multiphase flow simulation is well-known to be computationally demanding, and modeling large-scale engineered subsurface systems entails significant additional numerical challenges. These challenges arise from: (a) the presence of small-scale discrete features like shafts, tunnels, waste packages, and barriers; (b) the need to accurately represent both the waste form processes at the small spatial scale of the repository and the large-scale transport processes throughout heterogeneous geological formations; (c) the strong contrast in material properties such as porosity and permeability, as well as the nonlinear constitutive relations for multiphase flow. Numerical solution entails discretization of the coupled system of nonlinear governing equations and solving a linear system of equations at each Newton–Raphson iteration. Practical problems require a very large number of unknowns that must be solved efficiently using iterative methods in parallel on high-performance computers. The unique challenges noted above can lead to an ill-conditioned Jacobian matrix and non-convergence with Newton's method due to discontinuous nonlinearity in constitutive models. Moreover, practical applications can require numerous Monte-Carlo simulations to explore uncertainly in material properties, geological heterogeneity, failure scenarios, or other factors; governmental regulatory agencies can mandate these as part of Performance Assessments. Hence there is a need for flexible, robust, and computationally efficient methods for multiphase flow in large-scale engineered subsurface systems. We apply the open-source simulator PFLOTRAN to the practical problem of performance assessment of the US DOE Waste Isolation Pilot Plant (WIPP) site. The simulator employs a finite volume discretization and uses the PETSc parallel framework. We evaluate the performance of several preconditioners for the iterative solution of the linearized Jacobian system; these range from stabilized-biconjugate-gradient with block-Jacobi preconditioning (BCGS) to methods adopted from reservoir modeling, such as the constrained pressure residual (CPR) two-stage preconditioner and flexible generalized residual solver (FGMRES). We also implement within PETSc the general-purpose nonlinear solver, Newton trust-region dogleg Cauchy (NTRDC), which truncates the Newton update or modifies the update with a Cauchy solution that is within the quadratic model trust-region of the objective function. We demonstrate the effectiveness of each method for a series of test problems with increasing difficulty. We find that the NTRDC and FGMRES-CPR-ABF (FCA) preconditioners generally perform best for the test problem having the extreme nonlinear processes, achieving a 50x speed-up compared with BCGS. The most ill-conditioned and extreme nonlinear simulations do not converge with BCGS (as one may expect), but they do complete the simulation with NTRDC and FCA. We also investigate the strong scalability of each method and demonstrate the impact of node-packing upon parallel performance on modern processor architectures.

More Details

GDSA Framework Development and Process Model Integration FY2021

Mariner, Paul; Berg, Timothy M.; Debusschere, Bert; Eckert, Aubrey; Harvey, Jacob A.; Laforce, Tara C.; Leone, Rosemary C.; Mills, Melissa M.; Nole, Michael A.; Park, Heeho D.; Perry, F.V.; Seidl, D.T.; Swiler, Laura P.; Chang, Kyung W.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and highlevel nuclear waste (HLW). A high priority for SFWST disposal R&D is disposal system modeling (DOE 2012, Table 6; Sevougian et al. 2019). The SFWST Geologic Disposal Safety Assessment (GDSA) work package is charged with developing a disposal system modeling and analysis capability for evaluating generic disposal system performance for nuclear waste in geologic media.

More Details

GDSA Repository Systems Analysis Investigations in FY2021

Laforce, Tara C.; Basurto, Eduardo; Chang, Kyung W.; Jayne, Richard; Leone, Rosemary C.; Nole, Michael A.; Foulk, James W.; Stein, Emily

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in the Fiscal Year (FY) 2021 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.

More Details

Geomechanical response due to nonisothermal fluid injection into a reservoir☆

Advances in Water Resources

Green, Christopher P.; Wilkins, Andy; Ennis-King, Jonathan; Laforce, Tara C.

Th geomechanical response of a porous reservoir due to injection of fluid can result from a complex interplay between the changes in porepressure and temperature near the wellbore. As a result, predictions are usually made using either simplified analytical models, which may apply unrealistic assumptions in order to produce a tractable model, or detailed numerical simulations that can be computationally expensive. LaForce et al. (2014a, 2014b) developed a semi-analytical model for the geomechanical response of a reservoir to nonisothermal, multi-phase fluid injection, which has been used in studies of CO2 sequestration. We demonstrate that a numerical solution using the MOOSE software precisely matches the analytical formulae. We then include various effects in the numerical model that relax the simplifying assumptions made in the analytical derivation. We find the analytic and numerical solutions for the fluid and temperature fronts still agree reasonably, while only qualitative agreement is observed for other quantities such as stress and displacement. We conclude the LaForce et al. (2014a,b) solutions are useful for rapid investigation of projects involving injection of cold fluid into warm aquifers. However, the enhancements afforded by MOOSE, such as high-precision fluid equations of state and the ability to more accurately capture geological complexity, along with its computational scalability which greatly reduces runtimes, means that MOOSE should be preferred for more sophisticated analyses. Because validating complex coupled codes is challenging, we propose that the model contained herein can be used as a benchmark for other coupled codes.

More Details

Advances in GDSA Framework Development and Process Model Integration

Mariner, Paul; Nole, Michael A.; Basurto, Eduardo; Berg, Timothy M.; Chang, Kyung W.; Debusschere, Bert; Eckert, Aubrey; Ebeida, Mohamed; Gross, Mike; Hammond, Glenn; Harvey, Jacob A.; Jordan, Spencer H.; Kuhlman, Kristopher L.; Laforce, Tara C.; Leone, Rosemary C.; Mclendon, William; Mills, Melissa M.; Park, Heeho D.; Foulk, James W.; Foulk, James W.; Seidl, D.T.; David, Sevougian; Stein, Emily; Swiler, Laura P.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and highlevel nuclear waste (HLW). A high priority for SFWST disposal R&D is to develop a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2020 advances of the Geologic Disposal Safety Assessment (GDSA) Framework and PFLOTRAN development groups of the SFWST Campaign. The common mission of these groups is to develop a geologic disposal system modeling capability for nuclear waste that can be used to probabilistically assess the performance of disposal options and generic sites. The capability is a framework called GDSA Framework that employs high-performance computing (HPC) capable codes PFLOTRAN and Dakota.

More Details

GDSA Repository Systems Analysis Investigations (FY2020)

Laforce, Tara C.; Chang, Kyung W.; Foulk, James W.; Lowry, Thomas S.; Basurto, Eduardo; Jayne, Richard; Brooks, Dusty M.; Jordan, Spencer H.; Stein, Emily; Leone, Rosemary C.; Nole, Michael A.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in the Fiscal Year (FY) 2020 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.

More Details

Progress in Deep Geologic Disposal Safety Assessment in the U.S. since 2010

Mariner, Paul; Connolly, Laura A.; Cunningham, Leigh; Debusschere, Bert; Dobson, David C.; Frederick, Jennifer M.; Hammond, Glenn E.; Jordan, Spencer H.; Laforce, Tara C.; Nole, Michael A.; Park, Heeho D.; Foulk, James W.; Rogers, Ralph; Seidl, D.T.; Sevougian, Stephen D.; Stein, Emily; Swift, Peter; Swiler, Laura P.; Vo, Jonathan; Wallace, Michael

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media.

More Details

Illuminating the geology: Post-injection reservoir characterisation of the CO2CRC Otway site

International Journal of Greenhouse Gas Control

Dance, Tess; Laforce, Tara C.; Glubokovskikh, Stanislav; Ennis-King, Jonathan; Pevzner, Roman

Proper site characterisation is essential in the planning stages of a CO2 storage project; but we can also learn a good deal about the reservoir once the injection is underway or has been completed. During CO2CRC Otway Project Stage 2C, sources of valuable information about storage performance have been generated as a consequence of the staged injection of 15,000 t of CO2 rich gas, as well as observations from time-lapse seismic surveys and well monitoring data. Now that injection has ceased for Stage 2C, the geological model is compared against field observations for the period spanning injection and 23 months after injection ended. The post-injection reservoir characterisation has proven critical to refine the static and dynamic models for future field development and added assurance about the long-term stabilisation of the CO2 plume. The south-eastern progress of plume development, as seen on the time-lapse seismic data, has led to a review of the structural interpretation and horizon-fault geometry represented in the models. The developing plume has illuminated the extent of splay faults previously unresolved on the baseline seismic data. Saturation profiles interpreted from pulsed-neutron logs at the injection and observation wells show a preference for higher saturations occurring in high permeability distributary channels penetrated by each of the wells. This has reduced the uncertainty in predicting connectivity of this facies between the wells. The pressure data from numerous injection events has been used to refine the characterisation of the average horizontal permeability of the reservoir zone, and the vertical permeability of the intra-formational seal. Furthermore, it has been used to infer near-field bounding conditions of the interior splay fault, which in turn improves our understanding of containment at the site.

More Details

GDSA Repository Systems Analysis Progress Report

Sevougian, Stephen D.; Stein, Emily; Laforce, Tara C.; Foulk, James W.; Lowry, Thomas S.; Cunningham, Leigh; Nole, Michael A.; Haukwa, Charles B.; Chang, Kyung W.; Mariner, Paul

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in fiscal year (FY) 2019 associated with FY19 Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.

More Details

Benchmarking and QA testing in PFLOTRAN

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Laforce, Tara C.; Frederick, Jennifer M.; Hammond, Glenn E.; Stein, Emily; Mariner, Paul

PFLOTRAN is well-established in single-phase reactive transport problems, and current research is expanding its visibility and capability in two-phase subsurface problems. A critical part of the development of simulation software is quality assurance (QA). The purpose of the present work is QA testing to verify the correct implementation and accuracy of two-phase flow models in PFLOTRAN. An important early step in QA is to verify the code against exact solutions from the literature. In this work a series of QA tests on models that have known analytical solutions are conducted using PFLOTRAN. In each case the simulated saturation profile is rigorously shown to converge to the exact analytical solution. These results verify the accuracy of PFLOTRAN for use in a wide variety of two-phase modelling problems with a high degree of nonlinearity in the interaction between phase behavior and fluid flow.

More Details
50 Results
50 Results