Publications

Results 1–200 of 298
Skip to search filters

Evidence of decoupling of surface and bulk states in Dirac semimetal Cd3As2

Nanotechnology

Yu, W.; Rademacher, David R.; Valdez, Nichole R.; Rodriguez, Mark A.; Nenoff, T.M.; Pan, Wei P.

Dirac semimetals have attracted a great deal of current interests due to their potential applications in topological quantum computing, low-energy electronic devices, and single photon detection in the microwave frequency range. Herein are results from analyzing the low magnetic (B) field weak-antilocalization behaviors in a Dirac semimetal Cd3As2 thin flake device. At high temperatures, the phase coherence length lφ first increases with decreasing temperature (T) and follows a power law dependence of lφ ∝ T-0.4. Below ~3 K, lφ tends to saturate to a value of~180 nm. Another fitting parameter α, which is associated with independent transport channels, displays a logarithmic temperature dependence for T>3 K, but also tends to saturate below~3 K. The saturation value,~1.45, is very close to 1.5, indicating three independent electron transport channels, which we interpret as due to decoupling of both the top and bottom surfaces as well as the bulk. This result, to our knowledge, provides first evidence that the surfaces and bulk states can become decoupled in electronic transport in Dirac semimetal Cd3As2.

More Details

Single Photon Detection with On-Chip Number Resolving Capability

Chatterjee, Eric N.; Davids, Paul D.; Nenoff, T.M.; Pan, Wei P.; Rademacher, David R.; Soh, Daniel B.

Single photon detection (SPD) plays an important role in many forefront areas of fundamental science and advanced engineering applications. In recent years, rapid developments in superconducting quantum computation, quantum key distribution, and quantum sensing call for SPD in the microwave frequency range. We have explored in this LDRD project a new approach to SPD in an effort to provide deterministic photon-number-resolving capability by using topological Josephson junction structures. In this SAND report, we will present results from our experimental studies of microwave response and theoretical simulations of microwave photon number resolving detector in topological Dirac semimetal Cd3As2. These results are promising for SPD at the microwave frequencies using topological quantum materials.

More Details

Carbon Capture in Novel Porous Liquids

Rimsza, Jessica R.; Nenoff, T.M.; Christian, Matthew S.; Hurlock, Matthew H.

Direct air capture (DAC) of CO2 is one of the negative emission technologies under development to limit the impacts of climate change. The dilute concentration of CO2 in the atmosphere (~400 ppm) requires new materials for carbon capture with increased CO2 selectivity that is not met with current materials. Porous liquids (PLs) are an emerging material that consist of a combination of solvents and porous hosts creating a liquid with permanent porosity. PLs have demonstrated excellent CO2 selectivity, but the features that control how and why PLs selectively capture CO2 is unknown. To elucidate these mechanisms, density functional theory (DFT) simulations were used to investigate two different PLs. The first is a ZIF-8 porous host in a water/glycol/2-methylimidazole solvent. The second is the CC13 porous organic cage with multiple bulky solvents. DFT simulations identified that in both systems, CO2 preferentially bound in the pore window rather than in the internal pore space, identifying that the solvent-porous host interface controls the CO2 selectivity. Additionally, SNL synthesized ZIF-8 based PL compositions. Evaluation of the long-term stability of the PL identified no change in the ZIF-8 crystallinity after multiple agitation cycles, identifying its potential for use in carbon capture systems. Through this project, SNL has developed a fundamental understanding of solvent-host interactions, as well as how and where CO2 binds in PLs. Through these results, future efforts will focus not on how CO2 behaves inside the pore, but on the porous host-solvent interface as the driving force for PL stability and CO2 selectivity.

More Details

Dramatic Enhancement of Rare-Earth Metal–Organic Framework Stability Via Metal Cluster Fluorination

JACS Au

Christian, Matthew S.; Fritzsching, Keith F.; Harvey, Jacob H.; Sava Gallis, Dorina F.; Nenoff, T.M.; Rimsza, Jessica R.

Rare-earth polynuclear metal–organic frameworks (RE-MOFs) have demonstrated high durability for caustic acid gas adsorption and separation based on gas adsorption to the metal clusters. The metal clusters in the RE-MOFs traditionally contain RE metals bound by μ3–OH groups connected via organic linkers. Recent studies have suggested that these hydroxyl groups could be replaced by fluorine atoms during synthesis that includes a fluorine-containing modulator. Here, a combined modeling and experimental study was undertaken to elucidate the role of metal cluster fluorination on the thermodynamic stability, structure, and gas adsorption properties of RE-MOFs. Through systematic density-functional theory calculations, fluorinated clusters were found to be thermodynamically more stable than hydroxylated clusters by up to 8–16 kJ/mol per atom for 100% fluorination. The extent of fluorination in the metal clusters was validated through a 19F NMR characterization of 2,5-dihydroxyterepthalic acid (Y-DOBDC) MOF synthesized with a fluorine-containing modulator. 19F magic-angle spinning NMR identified two primary peaks in the isotropic chemical shift (δiso) spectra located at -64.2 and -69.6 ppm, matching calculated 19F NMR δiso peaks at -63.0 and -70.0 ppm for fluorinated systems. Calculations also indicate that fluorination of the Y-DOBDC MOF had negligible effects on the acid gas (SO2, NO2, H2O) binding energies, which decreased by only ~4 kJ/mol for the 100% fluorinated structure relative to the hydroxylated structure. Additionally, fluorination did not change the relative gas binding strengths (SO2 > H2O > NO2). Therefore, for the first time the presence of fluorine in the metal clusters was found to significantly stabilize RE-MOFs without changing their acid-gas adsorption properties.

More Details

Crystal Prediction and Design of Tunable Light Emission in BTB-Based Metal-Organic Frameworks

Advanced Optical Materials

Rimsza, Jessica R.; Henkelis, Susan E.; Rohwer, Lauren E.; Sava Gallis, Dorina F.; Nenoff, T.M.

Metal-organic frameworks (MOFs) have recently been shown to exhibit unique mechanisms of luminescence based on charge transfer between structural units in the framework. These MOFs have the potential to be structural tuned for targeted emission with little or no metal participation. A computationally led, material design and synthesis methodology is presented here that elucidates the mechanisms of light emission in interpenetrated structures comprised of metal centers (M = In, Ga, InGa, InEu) and BTB (1,3,5-Tris(4-carboxyphenyl)benzene) linkers, forming unique luminescent M-BTB MOF frameworks. Gas phase and periodic electronic structure calculations indicate that the intensity of the emission and the wavelength are overwhelmingly controlled by a combination of the number of interacting stacked linkers and their interatomic spacings, respectively. In the MOF, the ionic radii of the metal centers primarily control the expansion or shrinkage of the linker stacking distances. Experimentally, multiple M-BTB-based MOFs are synthesized and their photoluminescence was tested. Experiments validated the modeling by confirming that shifts in the crystal structure result in variations in light emission. Through this material design method, the mechanisms of tuning luminescence properties in interpenetrated M-BTB MOFs have been identified and applied to the design of MOFs with specific wavelength emission based on their structure.

More Details

Discovery of Complex Binding and Reaction Mechanisms from Ternary Gases in Rare Earth Metal–Organic Frameworks

Chemistry - A European Journal

Christian, Matthew S.; Nenoff, T.M.; Rimsza, Jessica R.

Understanding the selectivity of metal–organic frameworks (MOFs) to complex acid gas streams will enable their use in industrial applications. In this study, ab initio molecular dynamic simulations (AIMD) were used to simulate ternary gas mixtures (H2O-NO2-SO2) in rare earth 2,5-dihydroxyterephthalic acid (RE-DOBDC) MOFs. Stronger H2O gas-metal binding arose from thermal vibrations in the MOF sterically hindering access of SO2 and NO2 molecules to the metal sites. Gas-gas and gas-linker interactions within the MOF framework resulted in the formation of multiple secondary gas species including HONO, HNO2, NOSO, and HNO3⁻. Four gas adsorption sites were identified along with a new de-protonation reaction mechanism not observable through experiment. This study not only provides valuable information on competitive gas binding energies in the MOF, but it also provides important chemical insights into transient chemical reactions and mechanisms.

More Details

Electrodeposition of Complex High Entropy Oxides via Water Droplet Formation and Conversion to Crystalline Alloy Nanoparticles

Langmuir

Percival, Stephen P.; Lu, Ping L.; Lowry, Daniel R.; Nenoff, T.M.

A combination of electrodeposition and thermal reduction methods have been utilized for the synthesis of ligand-free FeNiCo alloy nanoparticles through a high-entropy oxide intermediate. These phases are of great interest to the electrocatalysis community, especially when formed by a sustainable chemistry method. This is successfully achieved by first forming a complex five element amorphous FeNiCoCrMn high-entropy oxide (HEO) phase via electrodeposition from a nanodroplet emulsion solution of the metal salt reactants. The amorphous oxide phase is then thermally treated and reduced at 570-600 °C to form the crystalline FeNiCo alloy with a separate CrMnOx cophase. The FeNiCo alloy is fully characterized by scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy elemental analysis and is identified as a face-centered cubic crystal with the lattice constant a = 3.52 Å. The unoptimized, ligand-free FeNiCo NPs activity toward the oxygen evolution reaction is evaluated in alkaline solution and found to have an ∼185 mV more cathodic onset potential than the Pt metal. Beyond being able to synthesize highly crystalline, ligand-free FeNiCo nanoparticles, the demonstrated and relatively simple two-step process is ideal for the synthesis of tailor-made nanoparticles where the desired composition is not easily achieved with classical solution-based chemistries.

More Details

Microwave response in a topological superconducting quantum interference device

Scientific Reports

Pan, Wei P.; Soh, Daniel B.; Yu, Wenlong; Davids, Paul D.; Nenoff, T.M.

Photon detection at microwave frequency is of great interest due to its application in quantum computation information science and technology. Herein are results from studying microwave response in a topological superconducting quantum interference device (SQUID) realized in Dirac semimetal Cd3As2. The temperature dependence and microwave power dependence of the SQUID junction resistance are studied, from which we obtain an effective temperature at each microwave power level. It is observed the effective temperature increases with the microwave power. This observation of large microwave response may pave the way for single photon detection at the microwave frequency in topological quantum materials.

More Details

Influence of Al location on formation of silver clusters in mordenite

Microporous and Mesoporous Materials

Rimsza, Jessica R.; Chapman, Karena W.; Nenoff, T.M.

Formation of zeolite supported Ag0 clusters depends on a combination of thermodynamically stable atomic configurations, charge balance considerations, and mobility of species on the surface and within pores. Periodic density functional theory (DFT) calculations were performed to evaluate how the location of Al in the mordenite (MOR) framework and humidity control Ag0 nanocluster formation. Four Al framework sites were studied (T1-T4) and the Al positions in the framework were identified by the shifts in the differential Al⋯Al pair distribution function (PDF). Furthermore, structural information about the Ag0 nanoclusters, such as dangling bonds, can be identified by Ag⋯Ag PDF data. For Ag0 formation in vacuum MOR structures with a Si:Al ratio of 5:1 with Al in the T1 position resulted in the most framework flexibility and the lowest Ag0 nanocluster charge, indicating the best result for formation of charge neutral nanoclusters. When water is present, Al in the T3 and T4 positions results in the formation of the smallest average Ag0 nanoclusters plus greater expansion of the O-T-O bond angle than in vacuum, indicating easier diffusion of the Ag0 nanoclusters to the surface. The presence of Al in 4-membered rings and in pairs indicates favorable MOR structures for formation of single Ag atoms, despite the existence of synthesis challenges. Therefore, Al in the T2 position is the least favorable for Ag0 nanocluster formation in both vacuum and in the presence of water. Al in the T1, T3, and T4 positions provides beneficial effects through framework flexibility and changes in nanocluster size or charge that can be leveraged for design of zeolites for formation of metallic nanoclusters.

More Details

Mechanistic Source Term Considerations for Advanced Non-LWRs (Revision 1)

Clark, Andrew C.; Higgins, Michael H.; Leonard, Elliott J.; Leute, Jennifer E.; Luxat, David L.; Nenoff, T.M.

This report is a functional review of the radionuclide containment strategies of fluoride-salt-cooled high temperature reactor (FHR), molten salt reactor (MSR) and high temperature gas reactor (HTGR) systems. This analysis serves as a starting point for further, more in-depth analyses geared towards identifying phenomenological gaps that still exist, hindering the creation of a mechanistic source term for these reactor types. As background information to this review, an overview of how a mechanistic source term is created and used for consequence assessment necessary for licensing is provided. How a mechanistic source term is used within the Licensing Modernization Project (LMP) is also provided. Lastly, the characteristics of non-LWR mechanistic source terms are examined. This report does not assess the viability of any software system for use with advanced reactor designs, but instead covers system function requirements. Future work within the Nuclear Energy Advanced Modeling and Simulations (NEAMS) program will address such gaps. This document is an update of SAND 2020-6730. An additional chapter is included as well as edits to original content.

More Details

Structure-property and thermodynamic relationships in rare earth (Y, Eu, Pr) iridate pyrochlores

Journal of Solid State Chemistry

Nenoff, T.M.; Rademacher, David X.; Rodriguez, Mark A.; Garino, Terry J.; Subramani, Tamilarasan; Navrotsky, Alexandra

This study relates structure, properties and thermodynamics, through synthesis, characterization and heat of formation measurements of rare earth iridate pyrochlore (RE2Ir2O7; RE ​= ​Y, Eu, Pr) crystalline powders. The RE2Ir2O7 phases are synthesized by high temperature solid-state synthesis methods. X-ray diffraction and elemental analysis techniques are utilized to validate the synthesis and enable structural comparisons. Trends in the bond angles indicate deviations from the Y and Eu analogs for the Pr2Ir2O7 phase. High temperature oxide melt solution calorimetry is used to determine the heats of formation of each phase. Breaking the trend expected across the rare earth series, the enthalpy of formation for Pr2Ir2O7 is more exothermic than the anticipated from the Y and Eu analogs.

More Details

Prediction of Reactive Nitrous Acid Formation in Rare-Earth MOFs via ab initio Molecular Dynamics

Angewandte Chemie - International Edition

Vogel, Dayton J.; Rimsza, Jessica R.; Nenoff, T.M.

Reactive gas formation in pores of metal–organic frameworks (MOFs) is a known mechanism of framework destruction; understanding those mechanisms for future durability design is key to next generation adsorbents. Herein, an extensive set of ab initio molecular dynamics (AIMD) simulations are used for the first time to predict competitive adsorption of mixed acid gases (NO2 and H2O) and the in-pore reaction mechanisms for a series of rare earth (RE)-DOBDC MOFs. Spontaneous formation of nitrous acid (HONO) is identified as a result of deprotonation of the MOF organic linker, DOBDC. The unique DOBDC coordination to the metal clusters allows for proton transfer from the linker to the NO2 without the presence of H2O and may be a factor in DOBDC MOF durability. This is a previously unreported mechanisms of HONO formation in MOFs. With the presented methodology, prediction of future gas interactions in new nanoporous materials can be achieved.

More Details

Continuous mof membrane-based sensors via functionalization of interdigitated electrodes

Membranes

Henkelis, Susan E.; Percival, Stephen P.; Small, Leo J.; Rademacher, David R.; Nenoff, T.M.

Three M-MOF-74 (M = Co, Mg, Ni) metal-organic framework (MOF) thin film membranes have been synthesized through a sensor functionalization method for the direct electrical detection of NO2. The two-step surface functionalization procedure on the glass/Pt interdigitated electrodes resulted in a terminal carboxylate group, with both steps confirmed through infrared spectroscopic analysis. This surface functionalization allowed the MOF materials to grow largely in a uniform manner over the surface of the electrode forming a thin film membrane over the Pt sensing elec-trodes. The growth of each membrane was confirmed through scanning electron microscopy (SEM) and X-ray diffraction analysis. The Ni and Mg MOFs grew as a continuous but non-defect free membrane with overlapping polycrystallites across the glass surface, whereas the Co-MOF-74 grew dis-continuously. To demonstrate the use of these MOF membranes as an NO2 gas sensor, Ni-MOF-74 was chosen as it was consistently fabricated as the best thin and homogenous membrane, as confirmed by SEM. The membrane was exposed to 5 ppm NO2 and the impedance magnitude was observed to decrease 123× in 4 h, with a larger change in impedance and a faster response than the bulk material. Importantly, the use of these membranes as a sensor for NO2 does not require them to be defect-free, but solely continuous and overlapping growth.

More Details

Near-Zero Power MOF-Based Sensors for NO2 Detection

Advanced Functional Materials

Small, Leo J.; Henkelis, Susan E.; Rademacher, David R.; Schindelholz, Mara E.; Krumhansl, James L.; Vogel, Dayton J.; Nenoff, T.M.

Detection and capture of toxic nitrogen oxides (NOx) is important for emissions control of exhaust gases and general public health. The ability to directly electrically detect trace (0.5–5 ppm) NO2 by a metal–organic framework (MOF)-74-based sensor at relatively low temperatures (50 °C) is demonstrated via changes in electrical properties of M-MOF-74, M = Co, Mg, Ni. The magnitude of the change is ordered Ni > Co > Mg and explained by each variant's NO2 adsorption capacity and specific chemical interaction. Ni-MOF-74 provides the highest sensitivity to NO2; a 725× decrease in resistance at 5 ppm NO2 and detection limit <0.5 ppm, levels relevant for industry and public health. Furthermore, the Ni-MOF-74-based sensor is selective to NO2 over N2, SO2, and air. Linking this fundamental research with future technologies, the high impedance of MOF-74 enables applications requiring a near-zero power sensor or dosimeter, with the active material drawing <15 pW for a macroscale device 35 mm2 with 0.8 mg MOF-74. This represents a 104–106× decrease in power consumption compared to other MOF sensors and demonstrates the potential for MOFs as active components for long-lived, near-zero power chemical sensors in smart industrial systems and the internet of things.

More Details

Electronic transport properties of a lithium-decorated ZrTe5 thin film

Scientific Reports

Yu, Wenlong; Elias, Jamie A.; Chen, Kuan W.; Baumbach, Ryan; Nenoff, T.M.; Modine, N.A.; Pan, Wei P.; Henriksen, Erik A.

Through a combination of single crystal growth, experiments involving in situ deposition of surface adatoms, and complimentary modeling, we examine the electronic transport properties of lithium-decorated ZrTe5 thin films. We observe that the surface states in ZrTe5 are robust against Li adsorption. Both the surface electron density and the associated Berry phase are remarkably robust to adsorption of Li atoms. Fitting to the Hall conductivity data reveals that there exist two types of bulk carriers: those for which the carrier density is insensitive to Li adsorption, and those whose density decreases during initial Li depositions and then saturates with further Li adsorption. We propose this dependence is due to the gating effect of a Li-adsorption-generated dipole layer at the ZrTe5 surface.

More Details

Enhanced sulfur dioxide adsorption in UiO-66 through crystal engineering and chalcogen bonding

Crystal Growth and Design

Walton, Ian; Chen, Carmen; Rimsza, Jessica M.; Nenoff, T.M.; Walton, Krista S.

Adsorption of corrosive SO2 gas occurs in metal-organic frameworks (MOFs) including UiO-66. Improvements in SO2 capacity is obtained through the incorporation of residual modulators in the UiO-66 framework by introducing new binding sites in the material, through residual modulators. Four residual modulators were investigated (acetic acid, trifluoroacetic acid, 3-DMAP acid, cyanoacetic acid), and the UiO-66 framework modulated with cyanoacetic acid exhibited nearly twice the SO2 uptake for the 18:1 modulator/linker synthesis ratio compared with other modulated UiO-66 structures. Density functional theory investigations confirmed that targeted host-guest interactions were maintained after the modulator was incorporated into the framework. The strongest binding energy was between SO2 and cyanoacetic acid, consistent with dynamic SO2 adsorption data, and identified contributions from both the SO2 reacting with the residual modulator and the coordinating linkers. The successful increase in dynamic SO2 capacity illustrates how often-overlooked non-covalent interactions can be used in targeted adsorption applications. Further investigation into weak electrostatic interactions for adsorption properties is also needed to advance the potential selectivity and capacity in the adsorption sphere.

More Details

Effects of natural zeolites on field-scale geologic noble gas transport

Journal of Environmental Radioactivity

Feldman, Joshua D.; Paul, Matthew J.; Xu, Guangping X.; Rademacher, David R.; Wilson, Jennifer E.; Nenoff, T.M.

Improving predictive models for noble gas transport through natural materials at the field-scale is an essential component of improving US nuclear monitoring capabilities. Several field-scale experiments with a gas transport component have been conducted at the Nevada National Security Site (Non-Proliferation Experiment, Underground Nuclear Explosion Signatures Experiment). However, the models associated with these experiments have not treated zeolite minerals as gas adsorbing phases. This is significant as zeolites are a common alteration mineral with a high abundance at these field sites and are shown here to significantly fractionate noble gases during field-scale transport. This fractionation and associated retardation can complicate gas transport predictions by reducing the signal-to-noise ratio to the detector (e.g. mass spectrometers or radiation detectors) enough to mask the signal or make the data difficult to interpret. Omitting adsorption-related retardation data of noble gases in predictive gas transport models therefore results in systematic errors in model predictions where zeolites are present.Herein is presented noble gas adsorption data collected on zeolitized and non-zeolitized tuff. Experimental results were obtained using a unique piezometric adsorption system designed and built for this study. Data collected were then related to pure-phase mineral analyses conducted on clinoptilolite, mordenite, and quartz. These results quantify the adsorption capacity of materials present in field-scale systems, enabling the modeling of low-permeability rocks as significant sorption reservoirs vital to bulk transport predictions.

More Details

Mechanistic Source Term Considerations for Advanced Non-LWRs

Andrews, Nathan A.; Nenoff, T.M.; Luxat, David L.; Clark, Andrew; Leute, Jennifer E.

This report is a functional review of the radionuclide containment strategies of fluoride-salt-cooled high temperature reactor (FHR), molten salt reactor (IVISR) and high temperature gas reactor (HTGR) systems. This analysis serves as a starting point for further, more in-depth analyses geared towards identifying phenomenological gaps that still exist, preventing the creation of a mechanistic source term for these reactor types. As background information to this review, an overview of how a mechanistic source term is created and used for consequence assessment necessary for licensing is provided. How mechanistic source term is used within the LMP is also provided. Third, the characteristics of non-LWR mechanistic source terms are examined This report does not assess the viability of any software system for use with advanced reactor designs, but instead covers system function requirements. Future work within the Nuclear Energy Advanced Modeling and Simulations (NEAMS) program will address such gaps.

More Details

Luminescent Properties of DOBDC Containing MOFs: The Role of Free Hydroxyls

ACS Applied Materials and Interfaces

Henkelis, Susan E.; Rademacher, David R.; Vogel, Dayton J.; Valdez, Nichole R.; Rodriguez, Mark A.; Rohwer, Lauren E.; Nenoff, T.M.

A novel metal-organic framework (MOF), Mn-DOBDC, has been synthesized in an effort to investigate the role of both the metal center and presence of free linker hydroxyls on the luminescent properties of DOBDC (2,5-dihydroxyterephthalic acid) containing MOFs. Co-MOF-74, RE-DOBDC (RE-Eu and Tb), and Mn-DOBDC have been synthesized and analyzed by powder X-ray diffraction (PXRD) and the fluorescent properties probed by UV-Vis spectroscopy and density functional theory (DFT). Mn-DOBDC has been synthesized by a new method involving a concurrent facile reflux synthesis and slow crystallization, resulting in yellow single crystals in monoclinic space group C2/c. Mn-DOBDC was further analyzed by single-crystal X-ray diffraction (SCXRD), scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), and photoluminescent emission. Results indicate that the luminescent properties of the DOBDC linker are transferred to the three-dimensional structures of both the RE-DOBDC and Mn-DOBDC, which contain free hydroxyls on the linker. In Co-MOF-74 however, luminescence is quenched in the solid state due to binding of the phenolic hydroxyls within the MOF structure. Mn-DOBDC exhibits a ligand-based tunable emission that can be controlled in solution by the use of different solvents.

More Details

Structural Features of Zirconium-Based Metal-Organic Frameworks Affecting Radiolytic Stability

Industrial and Engineering Chemistry Research

Hanna, Sylvia L.; Rademacher, David X.; Hanson, Donald J.; Islamoglu, Timur; Olszewski, Alyssa K.; Nenoff, T.M.; Farha, Omar K.

Metal-organic frameworks (MOFs) NU-1000 and UiO-66 are herein exposed to two different gamma irradiation doses and dose rates and analyzed to determine the structural features that affect their stability in these environments. MOFs have shown promise for the capture and sensing of off-gases at civilian nuclear energy reprocessing sites, nuclear waste repositories, and nuclear accident locations. However, little is understood about the structural features of MOFs that contribute to their stability levels under the ionizing radiation conditions present at such sites. This study is the first of its kind to explore the structural features of MOFs that contribute to their radiolytic stability. Both NU-1000 and UiO-66 are MOFs that contain Zr metal-centers with the same metal absorption cross section. However, the two MOFs exhibit different linker connectivities, linker aromaticities, node densities, node connectivities, and interligand separations. In this study, NU-1000 and UiO-66 were exposed to high (423.3 Gy/min, 23 min, and 37 s) and low (0.78 Gy/min, 4320 min) dose rates of 60Co gamma irradiation. NU-1000 displayed insignificant radiation damage under both dose rates due to its high linker connectivity, low node density, and low node connectivity. However, low radiation dose rates caused considerable damage to UiO-66, a framework with lower aromaticity and smaller interligand separation. Results suggest that chronic, low-radiation environments are more detrimental to Zr MOF stability than acute, high-radiation conditions.

More Details

Magnetic Tunability in RE-DOBDC MOFs via NOx Acid Gas Adsorption

ACS Applied Materials and Interfaces

Henkelis, Susan E.; Huber, Dale L.; Nenoff, T.M.

The magnetic susceptibility of NOx-loaded RE-DOBDC (rare earth (RE): Y, Eu, Tb, Yb; DOBDC: 2,5-dihydroxyterephthalic acid) metal–organic frameworks (MOFs) is unique to the MOF metal center. RE-DOBDC samples were synthesized, activated, and subsequently exposed to humid NOx. Each NOx-loaded MOF was characterized by powder X-ray diffraction, and the magnetic characteristics were probed by using a VersaLab vibrating sample magnetometer (VSM). Lanthanide-containing RE-DOBDC (Eu, Tb, Yb) are paramagnetic with a reduction in paramagnetism upon adsorption of NOx. Y-DOBDC has a diamagnetic moment with a slight reduction upon adsorption of NOx. The magnetic susceptibility of the MOF is determined by the magnetism imparted by the framework metal center. The electronic population of orbitals contributes to determining the extent of magnetism and change with NOx (electron acceptor) adsorption. Eu-DOBDC results in the largest mass magnetization change upon adsorption of NOx due to more available unpaired f electrons. Experimental changes in magnetic moment were supported by density functional theory (DFT) simulations of NOx adsorbed in lanthanide Eu-DOBDC and transition metal Y-DOBDC MOFs.

More Details

Energetics and Structure of Ag-Water Clusters Formed in Mordenite

Journal of Physical Chemistry C

Rimsza, Jessica R.; Chapman, Karena W.; Nenoff, T.M.

Zeolite-supported Ag0 clusters have broad applications from catalysis to medicine, necessitating a mechanistic understanding of the formation of Ag0 clusters in situ. Density functional theory (DFT) simulations have been performed on silver, water, and silver-water clusters in silica mordenite (Si-MOR), to identify the role of the confinement on the structure and energetics of Ag0 cluster formation. The most favorable binding energy in the 12-membered ring (MR) pore of the Si-MOR is a 10-15-atom Ag0 cluster. Computational pair distribution function (PDF) data indicates that the Ag0 and Ag0-H2O clusters formed in vacuum versus in Si-MOR exhibit structural differences. Additionally, when the Ag0 cluster is confined, the density decreases and the surface area increases, hypothesized to be due to the limiting geometry of the 12-MR main channel. An energetic drive toward formation of larger Ag0 clusters was also identified, with hydrated silver atoms generating higher energy structures. Overall, this work identifies mechanistic and structural insight into the role of nanoconfinement on formation of Ag0 clusters in mordenite.

More Details

Single-Crystal Synthesis and Characterization of Copper-Intercalated ZrTe5

Crystal Growth and Design

Nenoff, T.M.; Rademacher, David X.; Rodriguez, Mark A.; Yu, Wenlong; Pan, Wei P.

Herein is presented the synthesis and characterization of copper-intercalated zirconium pentatelluride (ZrTe5). ZrTe5:Cu0.05 crystals are synthesized by the chemical vapor transport method in a vacuum. X-ray diffraction and elemental analysis techniques are utilized to validate the synthesis. The results indicate that the intercalation of the layered Zr/Te structure with copper atoms causes the contraction of the unit cell along all three crystalline directions, the shrinkage of the overall volume of the unit cell, and the distortion of the unit cell. A single crystal was isolated, mechanically exfoliated, and used for the measurements of intercalation strains in a Hall bar device. Electronic transport studies indicate that an anomalous resistance drop is observed at T = 19 K. Furthermore, Rxx and Rxy results, respectively, indicate a probable disorder-induced localization effect and electron-type carriers.

More Details

Tuned Hydrogen Bonding in Rare-Earth Metal-Organic Frameworks for Design of Optical and Electronic Properties: An Exemplar Study of Y-2,5-Dihydroxyterephthalic Acid

ACS Applied Materials and Interfaces

Vogel, Dayton J.; Nenoff, T.M.; Rimsza, Jessica R.

Organic linkers in metal-organic framework (MOF) materials exhibit differences in hydrogen bonding (H-bonding), which can alter the geometric, electronic, and optical properties of the MOF. Density functional theory (DFT) simulations were performed on a photoluminescent Y-2,5-dihydroxyterephthalic acid (DOBDC) MOF with H-bonding concentrations between 0 and 100%; the H-bonds were located on both bidentate-and monodentate-bound DOBDC linkers. At 0% H-bond concentration in the framework, the lattice parameters contracted, the density increased, and simulated X-ray diffraction patterns shifted. Comparison with published experimental data identified that Y-DOBDC MOF structures must have a degree of H-bond concentration. The concentration of H-bonds in the system shifted the calculated band gap energy from 2.25 eV at 100% to 3.00 eV at 0%. The band gap energies also indicate a distinction of H-bonds formed on bidentate-coordinated linkers compared to those on monodentate linkers. Additionally, when the calculated optical spectra are compared with experimental data, the ligand-to-ligand charge-transfer luminescence in Y-DOBDC MOFs is expected to result from an average of 20-40% H-bonding with at least 50% of the bidentate linkers containing H-bonding. Therefore, the type of H-bonding within the DOBDC linker determines the electronic structure and the optical absorption of the MOF framework structure. Tuning of the H-bonding in rare-earth MOFs provides an opportunity to control the specific optical and adsorption properties of the MOF framework on the basis of reactions between the linker and the environment.

More Details

NOx Adsorption and Optical Detection in Rare Earth Metal-Organic Frameworks

ACS Applied Materials and Interfaces

Sava Gallis, Dorina F.; Vogel, Dayton J.; Vincent, Grace A.; Rimsza, Jessica R.; Nenoff, T.M.

Acid gases (e.g., NOx and SOx), commonly found in complex chemical and petrochemical streams, require material development for their selective adsorption and removal. Here, we report the NOx adsorption properties in a family of rare earth (RE) metal-organic frameworks (MOFs) materials. Fundamental understanding of the structure-property relationship of NOx adsorption in the RE-DOBDC materials platform was sought via a combined experimental and molecular modeling study. No structural change was noted following humid NOx exposure. Density functional theory (DFT) simulations indicated that H2O has a stronger affinity to bind with the metal center than NO2, while NO2 preferentially binds with the DOBDC ligands. Further modeling results indicate no change in binding energy across the RE elements investigated. Also, stabilization of the NO2 and H2O molecules following adsorption was noted, predicted to be due to hydrogen bonding between the framework ligands and the molecules and nanoconfinement within the MOF structure. This interaction also caused distinct changes in emission spectra, identified experimentally. Calculations indicated that this is due to the adsorption of NO2 molecules onto the DOBDC ligand altering the electronic transitions and the resulting photoluminescent properties, a feature that has potential applications in future sensing technologies.

More Details

Topological Quantum Materials for Quantum Computation

Nenoff, T.M.; Chou, Stanley S.; Dickens, Peter D.; Modine, N.A.; Yu, Wenlong Y.; Lee, Stephen R.; Sapkota, Keshab R.; Wang, George T.; Wendt, J.R.; Medlin, Douglas L.; Leonard, Francois L.; Pan, Wei P.

Recent years have seen an explosion in research efforts discovering and understanding novel electronic and optical properties of topological quantum materials (TQMs). In this LDRD, a synergistic effort of materials growth, characterization, electrical-magneto-optical measurements, combined with density functional theory and modeling has been established to address the unique properties of TQMs. Particularly, we have carried out extensive studies in search for Majorana fermions (MFs) in TQMs for topological quantum computation. Moreover, we have focused on three important science questions. 1) How can we controllably tune the properties of TQMs to make them suitable for quantum information applications? 2) What materials parameters are most important for successfully observing MFs in TQMs? 3) Can the physical properties of TQMs be tailored by topological band engineering? Results obtained in this LDRD not only deepen our current knowledge in fundamental quantum physics but also hold great promise for advanced electronic/photonic applications in information technologies. ACKNOWLEDGEMENTS The work at Sandia National Labs was supported by a Laboratory Directed Research and Development project. Device fabrication was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. We are grateful to many people inside and outside Sandia for their support and fruitful collaborations. This report describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

More Details

Reversible MOF-Based Sensors for the Electrical Detection of Iodine Gas

ACS Applied Materials and Interfaces

Small, Leo J.; Hill, Ryan C.; Krumhansl, James L.; Schindelholz, Mara E.; Chen, Zhihengyu; Chapman, Karena W.; Zhang, Xinran; Yang, Sihai; Schröder, Martin; Nenoff, T.M.

Iodine detection is crucial for nuclear waste clean-up and first responder activities. For ease of use and durability of response, robust active materials that enable the direct electrical detection of I2 are needed. Herein, a large reversible electrical response is demonstrated as I2 is controllably and repeatedly adsorbed and desorbed from a series of metal-organic frameworks (MOFs) MFM-300(X), each possessing a different metal center (X = Al, Fe, In, or Sc) bridged by biphenyl-3,3′,5,5′-tetracarboxylate linkers. Impedance spectroscopy is used to evaluate how the different metal centers influence the electrical response upon cycling of I2 gas, ranging from 10× to 106× decrease in resistance upon I2 adsorption in air. This large variation in electrical response is attributed not only to the differing structural characteristics of the MOFs but also to the differing MOF morphologies and how this influences the degree of reversibility of I2 adsorption. Interestingly, MFM-300(Al) and MFM-300(In) displayed the largest changes in resistance (up to 106×) yet lost much of their adsorption capacity after five I2 adsorption cycles in air. On the other hand, MFM-300(Fe) and MFM-300(Sc) revealed more moderate changes in resistance (10-100×), maintaining most of their original adsorption capacity after five cycles. This work demonstrates how changes in MOFs can profoundly affect the magnitude and reversibility of the electrical response of sensor materials. Tuning both the intrinsic (resistivity and adsorption capacity) and extrinsic (surface area and particle morphology) properties is necessary to develop highly reversible, large signal-generating MOF materials for direct electrical readout for I2 sensing.

More Details

Iodine detection in Ag-mordenite based sensors: Charge conduction pathway determinations

Microporous and Mesoporous Materials

Small, Leo J.; Krumhansl, James L.; Rademacher, David R.; Nenoff, T.M.

Detection of radiological iodine gas after nuclear accidents or in nuclear fuel reprocessing is necessary for the safety of human life and the environment. The development of sensors for the detection of iodine benefits from the incorporation of nanoporous materials with high selectivity for I2 from common competing gases in air. Silver mordenite zeolite (Ag-MOR) is widely-used material for capture of gaseous iodine (I2). Herein, thin film zeolite coatings were applied to Pt interdigitated electrodes (IEDs) to fabricate iodine gas sensors with direct electrical readout responses. Correlations between occluded ion, exposure to iodine gas, resultant AgI nanoparticle polymorphs and location in zeolite with resultant impedance spectroscopy (IS) properties are described. Furthermore, IS is leveraged to elucidate the changes in charge conduction pathways as determined by the cation-zeolite film incorporated in the sensor. Silver mordenite reveals a significant change in impedance upon exposure to gaseous I2 at 70 °C, and the magnitude and direction of the response is dependent on whether the Ag+-mordenite is reduced (Ag0) before I2 exposure. An equivalent circuit model is developed to describe the movement of charge along the surface and through the pores of the mordenite grains. Relative changes in the impedance of these conduction pathways are related to the chemical changes from Ag+ or Ag0 to resultant AgI polymorph phase. Together, these results inform design of a compact Ag-mordenite sensor for direct electrical detection of gaseous I2.

More Details

Topological Quantum Materials for Realizing Majorana Quasiparticles

Chemistry of Materials

Lee, Stephen R.; Sharma, Peter A.; Lima-Sharma, Ana L.; Pan, Wei P.; Nenoff, T.M.

In the past decade, basic physics, chemistry, and materials science research on topological quantum materials - and their potential use to implement reliable quantum computers - has rapidly expanded to become a major endeavor. A pivotal goal of this research has been to realize materials hosting Majorana quasiparticles, thereby making topological quantum computing a technological reality. While this goal remains elusive, recent data-mining studies, performed using topological quantum chemistry methodologies, have identified thousands of potential topological materials - some, and perhaps many, with potential for hosting Majoranas. We write this Review for advanced materials researchers who are interested in joining this expanding search, but who are not currently specialists in topology. The first half of the Review addresses, in readily understood terms, three main areas associated with topological sciences: (1) a description of topological quantum materials and how they enable quantum computing; (2) an explanation of Majorana quasiparticles, the important topologically endowed properties, and how it arises quantum mechanically; and (3) a description of the basic classes of topological materials where Majoranas might be found. The second half of the Review details selected materials systems where intense research efforts are underway to demonstrate nontrivial topological phenomena in the search for Majoranas. Specific materials reviewed include the groups II-V semiconductors (Cd3As2), the layered chalcogenides (MX2, ZrTe5), and the rare-earth pyrochlore iridates (A2Ir2O7, A = Eu, Pr). In each case, we describe crystallographic structures, bulk phase diagrams, materials synthesis methods (bulk, thin film, and/or nanowire forms), methods used to characterize topological phenomena, and potential evidence for the existence of Majorana quasiparticles.

More Details

Structure and electronic properties of rare earth DOBDC metal-organic-frameworks

Physical Chemistry Chemical Physics

Vogel, Dayton J.; Sava Gallis, Dorina F.; Nenoff, T.M.; Rimsza, Jessica R.

Here, we apply density functional theory (DFT) to investigate rare-earth metal organic frameworks (RE-MOFs), RE12(μ3-OH)16(C8O6H4)8(C8O6H5)4 (RE = Y, Eu, Tb, Yb), and characterize the level of theory needed to accurately predict structural and electronic properties in MOF materials with 4f-electrons. A two-step calculation approach of geometry optimization with spin-restricted DFT and large core potential (LCPs), and detailed electronic structures with spin-unrestricted DFT with a full valence potential + Hubbard U correction is investigated. Spin-restricted DFT with LCPs resulted in good agreement between experimental lattice parameters and optimized geometries, while a full valence potential is necessary for accurate representation of the electronic structure. The electronic structure of Eu-DOBDC MOF indicated a strong dependence on the treatment of highly localized 4f-electrons and spin polarization, as well as variation within a range of Hubbard corrections (U = 1-9 eV). For Hubbard corrected spin-unrestricted calculations, a U value of 1-4 eV maintains the non-metallic character of the band gap with slight deviations in f-orbital energetics. When compared with experimentally reported results, the importance of the full valence calculation and the Hubbard correction in correctly predicting the electronic structure is highlighted.

More Details

Synthesis of complex rare earth nanostructures using: In situ liquid cell transmission electron microscopy

Nanoscale Advances

Taylor, Caitlin A.; Nenoff, T.M.; Pratt, Sarah H.; Hattar, Khalid M.

Energy and cost efficient synthesis pathways are important for the production, processing, and recycling of rare earth metals necessary for a range of advanced energy and environmental applications. In this work, we present results of successful in situ liquid cell transmission electron microscopy production and imaging of rare earth element nanostructure synthesis, from aqueous salt solutions, via radiolysis due to exposure to a 200 keV electron beam. Nucleation, growth, and crystallization processes for nanostructures formed in yttrium(iii) nitrate hydrate (Y(NO3)3·4H2O), europium(iii) chloride hydrate (EuCl3·6H2O), and lanthanum(iii) chloride hydrate (LaCl3·7H2O) solutions are discussed. In situ electron diffraction analysis in a closed microfluidic configuration indicated that rare earth metal, salt, and metal oxide structures were synthesized. Real-time imaging of nanostructure formation was compared in closed cell and flow cell configurations. Notably, this work also includes the first known collection of automated crystal orientation mapping data through liquid using a microfluidic transmission electron microscope stage, which permits the deconvolution of amorphous and crystalline features (orientation and interfaces) inside the resulting nanostructures.

More Details

Investigation of Selective Capture and Detection of Specific Fission Gases

Nenoff, T.M.

This proposal is focused on the multidisciplinary, exploratory study of highly selective materials for distinguishing peaceful nuclear facilities from clandestine nuclear weapons development. In particular, we are focused on iodine fission off-gas species. This is a 1-year project; herein is the final FY1 8 report on the project. The project was divided into four Tasks: speciation, flowsheets, fission gas adsorption materials, and detection devices. We successfully addressed all four tasks and reported on them during this year's quarterly reports. This final report will serve as a summary of the accomplishments.

More Details

Nanoparticle Alloy Formation by Radiolysis

Journal of Physical Chemistry C

Grand, J.; Ferreira, Summer R.; De Waele, V.; Mintova, S.; Nenoff, T.M.

This Review Article focuses on the highly versatile and effective method of radiolysis for the synthesis of nanoparticles (NPs). In particular, the formation of bimetallic and alloyed nanoparticles (or nanoalloys), including both known super alloys and novel alloy NP compositions, is described. This Review Article discloses the synthesis techniques that rely on ionizing radiation sources to create metallic NPs. Then, alloy NPs formed from combinations of transition metals and noble metals with varied structures are described. Some of the advantages of radiolysis including exquisite control over the size, monodispersity, and alloying structure of NPs are discussed. Additionally, methodologies that facilitate the synthesis or deposition of NPs onto a range of supports under inert environments are described. Finally, applications of metallic NPs formed by radiolysis are summarized.

More Details

Direct Electrical Detection of Iodine Gas by a Novel Metal–Organic-Framework-Based Sensor

ACS Applied Materials and Interfaces

Nenoff, T.M.; Small, Leo J.

High-fidelity detection of iodine species is of utmost importance to the safety of the population in cases of nuclear accidents or advanced nuclear fuel reprocessing. In this paper, we describe the success at using impedance spectroscopy to directly detect the real-time adsorption of I2 by a metal–organic framework zeolitic imidazolate framework (ZIF)-8-based sensor. Methanolic suspensions of ZIF-8 were dropcast onto platinum interdigitated electrodes, dried, and exposed to gaseous I2 at 25, 40, or 70 °C. Using an unoptimized sensor geometry, I2 was readily detected at 25 °C in air within 720 s of exposure. The specific response is attributed to the chemical selectivity of the ZIF-8 toward I2. Furthermore, equivalent circuit modeling of the impedance data indicates a >105× decrease in ZIF-8 resistance when 116 wt % I2 is adsorbed by ZIF-8 at 70 °C in air. This irreversible decrease in resistance is accompanied by an irreversible loss in the long-range crystallinity, as evidenced by X-ray diffraction and infrared spectroscopy. Air, argon, methanol, and water were found to produce minimal changes in ZIF-8 impedance. Finally, this report demonstrates how selective I2 adsorption by ZIF-8 can be leveraged to create a highly selective sensor using >105× changes in impedance response to enable the direct electrical detection of environmentally relevant gaseous toxins.

More Details

Exceptional selectivity for dissolved silicas in industrial waters using mixed oxides

Journal of Water Process Engineering

Sasan, Koroush S.; Brady, Patrick V.; Krumhansl, James L.; Nenoff, T.M.

The removal of silica, ubiquitous in produced and industrial waters, by novel mixed oxides is investigated in this present study. We have combined the advantage of high selectivity hydrotalcite (HTC, (Mg6Al2(OH)16(CO3)·4H2O)), with large surface area of active alumina (AA, (Al2O3)) for effective removing of the dissolved silica from cooling tower water. The batch test results indicated the combined HTC/AA is a more effective method for removing silica from CTW than using each of HTC or AA separately. The silica uptake was confirmed by Fourier transform infrared (FTIR), and Energy dispersive spectroscopy (EDS). Results indicate HTC/AA effectively removes silica from cooling tower water (CTW), even in the presence of large concentrations of competing anions, such as Cl−, NO3− HCO3−, CO32− and SO42−. The Single Path Flow Through (SPFT) tests confirmed to rapid uptake of silica by combined HTC/AA during column filtration. The experimental data of silica adsorption fit best to Freundlich isotherm model.

More Details

Removal of Dissolved Silica using Calcinated Hydrotalcite in Real-life Applications

Sasan, Koroush S.; Brady, Patrick V.; Krumhansl, James L.; Nenoff, T.M.; Sasan, Koroush S.; Sasan, Koroush S.

Water shortages are a growing global problem. Reclamation of industrial and municipal wastewater will be necessary in order to mitigate water scarcity. However, many operational challenges, such as silica scaling, prevent large scale water reuse. Previously, our team at Sandia has demonstrated the use of selective ion exchange materials, such as calcinated hydrotalcite (HTC, (Mg 6 Al 2 (OH) 16 (CO 3 )*4H 2 O)), for the low cost removal of silica from synthetic cooling tower water. However, it is not currently know if calcinated HTC has similar capabilities in realistic applications. The purpose of this study was to investigate the ability of calcinated HTC to remove silica from real cooling tower water. This was investigated under both batch and continuous conditions, and in the presence of competing ions. It was determined that calcinated HTC behaved similarly in real and synthetic cooling tower water; the HTC is highly selective for the silica even in the presence of competing cations. Therefore, the data concludes that calcinated HTC is a viable anti-scaling pretreatment for the reuse of industrial wastewaters.

More Details

Waste Water for Power Generation via Energy Efficient Selective Silica Separations

Nenoff, T.M.; Brady, Patrick V.; Sasan, Koroush S.; Paap, Scott M.; Heimer, Brandon W.; Krumhansl, J.K.; Howe, K.H.; Stoll, Z.S.; Stomp, J.S.

Silica is ubiquitous in produced and industrial waters, and plays a major disruptive role in water recycle. Herein we have investigated the use of mixed oxides for the removal of silica from these waters, and their incorporation into a low cost and low energy water purification process. High selectivity hydrotalcite (HTC, (Mg6Al2(OH)16(CO3)•4H2O)), is combined in series with high surface area active alumina (AA, (Al2O3)) as the dissolved silica removal media. Batch test results indicated that combined HTC/AA is a more effective method for removing silica from industrial cooling tower wasters (CTW) than using HTC or AA separately. The silica uptake via ion exchange on the mixed oxides was confirmed by Fourier transform infrared (FTIR), and Energy dispersive spectroscopy (EDS). Furthermore, HTC/AA effectively removes silica from CTW even in the presence of large concentrations of competing anions, such as Cl-, NO3- HCO3-, CO32- and SO42-. Similar to batch tests, Single Path Flow Through (SPFT) tests with sequential HTC/AA column filtration has very high silica removal too. Technoeconomic Analysis (TEA) was simultaneously performed for cost comparisons to existing silica removal technologies.

More Details

Multi-objective Optimization of Solar-driven Hollow-fiber Membrane Distillation Systems

Nenoff, T.M.; Moore, S.M.; Mirchandani, S.M.; Karanikola, V.K.; Arnold, R.A.; Saez, E.S.

Securing additional water sources remains a primary concern for arid regions in both the developed and developing world. Climate change is causing fluctuations in the frequency and duration of precipitation, which can be can be seen as prolonged droughts in some arid areas. Droughts decrease the reliability of surface water supplies, which forces communities to find alternate primary water sources. In many cases, ground water can supplement the use of surface supplies during periods of drought, reducing the need for above-ground storage without sacrificing reliability objectives. Unfortunately, accessible ground waters are often brackish, requiring desalination prior to use, and underdeveloped infrastructure and inconsistent electrical grid access can create obstacles to groundwater desalination in developing regions. The objectives of the proposed project are to (i) mathematically simulate the operation of hollow fiber membrane distillation systems and (ii) optimize system design for off-grid treatment of brackish water. It is anticipated that methods developed here can be used to supply potable water at many off-grid locations in semi-arid regions including parts of the Navajo Reservation. This research is a collaborative project between Sandia and the University of Arizona.

More Details

Tunable Impedance Spectroscopy Sensors via Selective Nanoporous Materials

Nenoff, T.M.; Small, Leo J.

Impedance spectroscopy was leveraged to directly detect the sorption of I 2 by selective adsorption into nanoporous metal organic frameworks (MOF). Films of three different types of MOF frameworks, respectively, were drop cast onto platinum interdigitated electrodes, dried, and exposed to gaseous I 2 at 25, 40, or 70 C. The MOF frameworks varied in topology from small pores (equivalent to I 2 diameter) to large pore frameworks. The combination of the chemistry of the framework and pore size dictated quantity and kinetics of I 2 adsorption. Air, argon, methanol, and water were found to produce minimal changes in ZIF-8 impedance. Independent of MOF framework characteristics, all resultant sensors showed high response to I 2 in air. As an example of sensor output, I 2 was readily detected at 25 C in air within 720 s of exposure, using an un-optimized sensor geometry with a small pored MOF. Further optimization of sensor geometry, decreasing MOF film thicknesses and maximizing sensor capacitance, will enable faster detection of trace I 2 .

More Details

Footprint of Sandia's August 15 2016 Informal Idea Exploration Session on "Towards an Engineering and Applied Science of Research"

Tsao, Jeffrey Y.; Fleming Lindsley, Elizabeth S.; Heffelfinger, Grant S.; Narayanamurti, Venkatesh N.; Schneider, Rick S.; Starkweather, Lynne M.; Ting, Christina T.; Yajima, Rieko Y.; Bauer, Travis L.; Coltrin, Michael E.; Guy, Donald W.; Jones, Wendell J.; Mareda, John F.; Nenoff, T.M.; Turnley, Jessica G.

On August 15, 2016, Sandia hosted a visit by Professor Venkatesh Narayanamurti. Prof Narayanamurti (Benjamin Peirce Research Professor of Technology and Public Policy at Harvard, Board Member of the Belfer Center for Science and International Affairs, former Dean of the School of Engineering and Applied Science at Harvard, former Dean of Engineering at UC Santa Barbara, and former Vice President of Division 1000 at Sandia). During the visit, a small, informal, all-day idea exploration session on "Towards an Engineering and Applied Science of Research" was conducted. This document is a brief synopsis or "footprint" of the presentations and discussions at this Idea Exploration Session. The intent of this document is to stimulate further discussion about pathways Sandia can take to improve its Research practices.

More Details

Removing Dissolved Silica from Waste Water with Catechol and Active Carbon

Nenoff, T.M.; Sasan, Koroush S.; Brady, Patrick V.; Krumhansl, James L.

Fresh water scarcity is going to be a global great challenge in the near future because of the increasing population. Our water resources are limited and, hence, water treatment and recycling methods are the only alternatives for fresh water procurement in the upcoming decades. Water treatment and recycling methods serve to remove harmful or problematic constituents from ground, surface and waste waters prior to its consumption, industrial supply, or other uses. Scale formation in industrial and domestic installations is still an important problem during water treatment. In water treatment, silica scaling is a real and constant concern for plant operations. The focus of this study is on the viability of using a combination of catechol and active carbon to remove dissolved silica from concentrated cooling tower water (CCTW). Various analytical methods, such as ICP-MS and UV-vis, were used to understand the structure-property relationship between the material and the silica removal results. UV-Vis indicates that catechol can react with silica ions and form a silica-catecholate complex. The speciation calculation of catechol and silica shows that catechol and silica bind in the pH range of 8 – 10; there is no evidence of linkage between them in neutral and acidic pHs. The silica removal results indicate that using ~4g/L of catechol and 10g/L active carbon removes up to 50% of the dissolved silica from the CCTW.

More Details

DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES

Rigali, Mark J.; Miller, James E.; Altman, Susan J.; Biedermann, Laura B.; Brady, Patrick V.; Kuzio, Stephanie P.; Nenoff, T.M.; Rempe, Susan R.

Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

More Details

Selective O2 Sorption at Ambient Temperatures via Node Distortions in Sc-MIL-100

Chemistry of Materials

Sava Gallis, Dorina F.; Chapman, Karena W.; Rodriguez, Mark A.; Greathouse, Jeffery A.; Parkes, Marie V.; Nenoff, T.M.

An open pored metal-organic framework (MOF) with oxygen selectivity at exceptionally high temperatures is confirmed by synthesis, sorption, and synchrotron structural analyses. The large-pore MIL-100 framework with access to the metal center (e.g., Sc and Fe) resulted in preferential O2 over N2 gas uptake at temperatures ranging from 77 K to ambient temperatures (258, 298, and 313 K). Most notably, Sc-MIL-100 shows exceptional O2 sorption; pair distribution function analyses indicate that this is due to distortions in the framework owing to the size of Sc atoms, in particular in the trimer metal cluster. Experimental studies also correlate very well with GCMC simulations, confirming more favorable O2-framework interactions at pressures up to 1 bar, due to the close proximity of O2 to the high density of metal centers in the small tetrahedral cages. Both materials maintain their crystallinity upon gas adsorption cycling, are regenerable, and show exceptional promise for use in energy efficient oxygen purification processes, such as Pressure Swing Adsorption.

More Details

Ab initio molecular dynamics determination of competitive O2 vs. N2 adsorption at open metal sites of M2(dobdc)

Physical Chemistry Chemical Physics

Parkes, Marie V.; Greathouse, Jeffery A.; Hart, David B.; Sava Gallis, Dorina F.; Nenoff, T.M.

The separation of oxygen from nitrogen using metal-organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. This unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.

More Details

Determination of Desorbed Species During Heating of AgI-Mordenite Provided by ORNL

Nenoff, T.M.; Croes, Kenneth J.; Garino, Terry J.; Mowry, Curtis D.

This study is focused on describing the desorbed off gases due to heating of the AgIMordenite (MOR) produced at ORNL for iodine (I2) gas capture from nuclear fuel aqueous reprocessing. In particular, the interest is for the incorporation of the AgI-MOR into a waste form, which might be the Sandia developed, low temperature sintering, Bi-Si oxide based, Glass Composite Material (GCM). The GCM has been developed as a waste form for the incorporation any oxide based getter material. In the case where iodine may be released during the sintering process of the GCM, additional Ag flake is added as further insurance in total iodine capture and retention. This has been the case for the incorporated ORNL developed AgIMOR. Thermal analysis studies were carried out to determine off gasing processes of ORNL AgIMOR. Independent of sample size, ~7wt% of total water is desorbed by 225°C. This includes both bulk surface and occluded water, and are monitored as H2O and OH. Of that total, ~5.5wt% is surface water which is removed by 125°C, and 1.5wt% is occluded (in zeolite pore) water. Less than ~1 wt% total water continues to desorb, but is completely removed by 500°C. Above 300°C, the detectable remaining desorbing species observed are iodine containing compounds, including I and I2.

More Details

Inelastic Neutron Scattering and Molecular Simulation of the Dynamics of Interlayer Water in Smectite Clay Minerals

Journal of Physical Chemistry C

Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; Krumhansl, James L.; Nenoff, T.M.

The study of mineral-water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to compare the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200-900 cm-1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.

More Details

Novel metal-organic frameworks for efficient stationary sources via oxyfuel combustion

Nenoff, T.M.; Sava Gallis, Dorina F.; Parkes, Marie V.; Greathouse, Jeffery A.; Rodriguez, Mark A.; Paap, Scott M.; Williams, T.C.; Shaddix, Christopher R.

Oxy-fuel combustion is a well-known approach to improve the heat transfer associated with stationary energy processes. Its overall penetration into industrial and power markets is constrained by the high cost of existing air separation technologies for generating oxygen. Cryogenic air separation is the most widely used technology for generating oxygen but is complex and expensive. Pressure swing adsorption is a competing technology that uses activated carbon, zeolites and polymer membranes for gas separations. However, it is expensive and limited to moderate purity O₂ . MOFs are cutting edge materials for gas separations at ambient pressure and room temperature, potentially revolutionizing the PSA process and providing dramatic process efficiency improvements through oxy-fuel combustion. This LDRD combined (1) MOF synthesis, (2) gas sorption testing, (3) MD simulations and crystallography of gas siting in pores for structure-property relationship, (4) combustion testing and (5) technoeconomic analysis to aid in real-world implementation.

More Details

SNL Sigma Off-Gas Team Contribution to the FY15 DOE/NE-MRWFD Campaign Accomplishments Report

Nenoff, T.M.

This program at Sandia is focused on Iodine waste form development for Fuel Cycle R&D needs. Our research has a general theme of “Capture and Storage of Iodine Fission Gas “ in which we are focused on silver loaded zeolite waste forms, evaluation of iodine loaded getter materials (eg., mordenite zeolite), and the development of low temperature glass waste forms that successfully incorporate iodine loaded getter materials from I2, organic iodide, etc. containing off-gas streams.

More Details

Complete Initial Scoping Tests on the Incorporation of Novel Loaded Iodine Getters into GCM

Nenoff, T.M.; Garino, Terry J.; Croes, Kenneth J.

This study encompasses initial scoping tests on the incorporation of a novel iodine loaded getter material into the Sandia developed low temperature sintering glass ceramic material (GCM) waste form. In particular, we studied the PNNL Ag-I-Aerogel. Optical microscopy indicates inhomogenous samples based on particle sizes and variations in color (AgI vs Ag/AgO on silica). TGA/MS data when heated in air indicates loss of iodine and organics (CO2) between 250-450°C a total of ~15wt% loss, with additional / small iodine loss when during 550°C hold for 1 hr. TGA/MS data when heated in N2 indicates less organic and slightly less iodine loss below 550°C, with no loss of iodine in 550°C 1 hour hold. Furthermore, a substantial mass loss of sulfur containing compounds is observed (m/e of 34 and 36) between 150 – 550°C in both air and N2 sintering atmospheres. In an effort to capture iodine lost to volatilization during heating (at temps below glass sintering temperature of 550°C), we added 5 wt% Ag flake to the AgIaerogel. Resulting data indicates the iodine is retained with the addition of the Ag flake, resulting in only a small iodine loss (< 1wt%) at ~350°C. No method of curtailing loss of sulfur containing compounds due to heating was successful in this scoping study.

More Details

Demonstrate Scale-up Procedure for Glass Composite Material (GCM) for Incorporation of Iodine Loaded AgZ

Nenoff, T.M.; Garino, Terry J.; Croes, Kenneth J.; Rodriguez, Mark A.

Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 – 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR and 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550°C for 1hr. They were cooled slowly (1°C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm³. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.

More Details

Enhanced O2 selectivity versus N2 by partial metal substitution in Cu-BTC

Chemistry of Materials

Sava Gallis, Dorina F.; Parkes, Marie V.; Greathouse, Jeffery A.; Zhang, Xiaoyi; Nenoff, T.M.

Here, we describe the homogeneous substitution of Mn, Fe, and Co at various levels into a prototypical metal-organic framework (MOF), namely Cu-BTC (HKUST-1), and the effect of that substitution on preferential gas sorption. Using a combination of density functional theory (DFT) calculations, postsynthetic metal substitutions, materials characterization, and gas sorption testing, we demonstrate that the identity of the metal ion has a quantifiable effect on their oxygen and nitrogen sorption properties at cryogenic temperatures. An excellent correlation is found between O2/N2 selectivities determined experimentally at 77 K and the difference in O2 and N2 binding energies calculated from DFT modeling data: Mn > Fe &-apcode; Co 蠑 Cu. Room temperature gas sorption studies were also performed and correlated with metal substitution. The Fe-exchanged sample shows a significantly higher nitrogen isosteric heat of adsorption at temperatures close to ambient conditions (273-298 K) as compared to all other metals studied, indicative of favorable interactions between N2 and coordinatively unsaturated Fe metal centers. Interestingly, differences in gas adsorption results at cryogenic and room temperatures are evident; they are explained by comparing experimental results with DFT binding energies (0 K) and room temperature Grand Canonical Monte Carlo simulations.

More Details

Effect of metal in M3(btc)2 and M2(dobdc) MOFs for O2/N2 separations: A combined density functional theory and experimental study

Journal of Physical Chemistry. C

Nenoff, T.M.; Parkes, Marie V.; Greathouse, Jeffery A.; Sava Gallis, Dorina F.

Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M2(dobdc) and M3(btc)2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements. A periodic trend in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.

More Details

Silver-mordenite for radiologic gas capture from complex streams: Dual catalytic CH3I decomposition and I confinement

Microporous and Mesoporous Materials

Nenoff, T.M.; Rodriguez, Marko A.; Soelberg, Nick R.; Chapman, Karena W.

The selective capture of radiological iodine (129I) is a persistent concern for safe nuclear energy. In nuclear fuel reprocessing scenarios, the gas streams to be treated are extremely complex, containing several distinct iodine-containing molecules amongst a large variety of other species. Silver-containing mordenite (MOR) is a longstanding benchmark for radioiodine capture, reacting with molecular iodine (I2) to form AgI. However the mechanisms for organoiodine capture is not well understood. Here we investigate the capture of methyl iodide from complex mixed gas streams by combining chemical analysis of the effluent gas stream with in depth characterization of the recovered sorbent. Tools applied include infrared spectroscopy, thermogravimetric analysis with mass spectrometry, micro X-ray fluorescence, powder X-ray diffraction analysis, and pair distribution function analysis. The MOR zeolite catalyzes decomposition of the methyl iodide through formation of surface methoxy species (SMS), which subsequently reacts with water in the mixed gas stream to form methanol, and with methanol to form dimethyl ether, which are both detected downstream in the effluent. The liberated iodine reacts with Ag in the MOR pore to the form subnanometer AgI clusters, smaller than the MOR pores, suggesting that the iodine is both physically and chemically confined within the zeolite.

More Details

Studies on the Mechanisms of Methyl Iodide Adsorption and Iodine Retention on Silver-Mordenite

Nenoff, T.M.; Soelberg, Nick S.

Silver-containing mordenite (MOR) is a longstanding benchmark for radioiodine capture, reacting with molecular iodine (I2) to form AgI. However the mechanisms for organoiodine capture are not well understood. Here we investigate the capture of methyl iodide from complex mixed gas streams by combining chemical analysis of the effluent gas stream with in depth characterization of the recovered sorbent.

More Details

Optimization studies on GCM for iodine waste forms

Nenoff, T.M.

We are purusing an understand of the durability and materials processability of the low temperature sintering Bi-Si oxide Glass Composite Material (GCM)1 Waste Form for iodine capture materials. The chemical and physical controls over iodine release from candidate 129I waste forms must be quantified to predict long-term waste form effectiveness.

More Details

AgI-MOR Loading Effect on the Durability of the Sandia Low Temperature Sintering GCM Waste Form

Nenoff, T.M.; Brady, Patrick V.; Mowry, Curtis D.; Garino, Terry J.

Herein, we study the durability of the Sandia Bi-Si oxide Glass Composite Material (GCM) waste form when formulated with different weight percent levels of AgI-MOR. The post-iodine exposure AgI-MOR material was provided to SNL by ORNL. Durability results for the GCM fabricated with 22 and 25% AgI-MOR indicate releases of Ag and I at the same low rates as 15% AgI-MOR GCM, and by the same mechanism. Iodine and Ag release is controlled by the low solubility of an amorphous, hydrated silver iodide, not by the surface-controlled dissolution of I2- loaded Ag-Mordenite. Based on this data, we postulate that much higher loading levels of AgIMOR are probable in this GCM waste form, and limits will govern by retention of mechanical integrity of the GCM versus the solubility of silver iodide.

More Details

Microstructure and Cs behavior of Ba-doped aluminosilicate pollucite irradiated with F+ ions

Journal of Physical Chemistry C

Jiang, Weilin; Kovarik, Libor; Zhu, Zihua; Varga, Tamas; Engelhard, Mark H.; Bowden, Mark E.; Nenoff, T.M.; Garino, Terry J.

Radionuclide 137Cs is one of the major fission products that dominate heat generation in spent fuels over the first 300 years. A durable waste form for 137Cs that decays to 137Ba is needed to minimize its environmental impact. Aluminosilicate pollucite CsAlSi 2O6 is selected as a model waste form to study the decay-induced structural effects. Whereas Ba-containing precipitates are not present in charge-balanced Cs0.9Ba0.05AlSi 2O6, they are found in Cs0.9Ba 0.1AlSi2O6 and identified as monoclinic Ba 2Si3O8. Pollucite is susceptible to electron-irradiation-induced amorphization. The threshold density of electronic energy deposition for amorphization was determined to be ∼235 keV/nm 3. Pollucite can be readily amorphized under F+ ion irradiation at 673 K. A significant amount of Cs diffusion and release from the amorphized pollucite occurs during the irradiation. However, cesium is immobile in the crystalline structure under He+ ion irradiation at room temperature. The critical temperature for amorphization is not higher than 873 K under F+ ion irradiation. If kept at or above 873 K all the time, the pollucite structure is unlikely to be amorphized; Cs diffusion and release are improbable. A general discussion regarding pollucite as a potential waste form is provided in this report. © 2014 American Chemical Society.

More Details

Efficient photoluminescence via metal-ligand alteration in a new MOFs family

Chemistry of Materials

Sava Gallis, Dorina F.; Rohwer, Lauren E.; Rodriguez, Mark A.; Nenoff, T.M.

Here, we introduce a family of metal-organic frameworks (MOFs) whose photoluminescence is tunable through metal and organic ligand substitutions. The compounds in this family are composed of In, In-Eu, or Eu metal centers and organic ligand chromophores. Systematic variations in the metal and organic components resulted in materials with emissions ranging from white to red. The single-component white-light emitter material is made of In, 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoic acid (TTB) and oxalic acid. Red-emitting MOFs composed of Eu metal centers and TTB ligands have a room temperature quantum yield (QY) of 50% and a 48% QY at 150 °C due to reversible thermal quenching. This is the highest quantum yield measured at elevated temperatures reported for this class of materials. The materials are thermally stable, retaining their high QY after heating at 150 °C for several hours. These thermal quenching/stability studies show the potential use of MOFs in devices that operate at elevated temperatures, such as white-light-emitting diodes for solid-state lighting. This is a unique study that correlates the QY, thermal quenching, and thermal stability of MOFs with structural properties. © 2014 American Chemical Society.

More Details

Determine Minimum Silver Flake Addition to GCM for Iodine Loaded AgZ

Garino, Terry J.; Nenoff, T.M.; Rodriguez, Marko A.

The minimum amount of silver flake required to prevent loss of I{sub 2} during sintering in air for a SNL Glass Composite Material (GCM) Waste Form containing AgI-MOR (ORNL, 8.7 wt%) was determined to be 1.1 wt% Ag. The final GCM composition prior to sintering was 20 wt% AgI-MOR, 1.1 wt% Ag, and 80 wt% Bi-Si oxide glass. The amount of silver flake needed to suppress iodine loss was determined using thermo gravimetric analysis with mass spectroscopic off-gas analysis. These studies found that the ratio of silver to AgI-MOR required is lower in the presence of the glass than without it. Therefore an additional benefit of the GCM is that it serves to inhibit some iodine loss during processing. Alternatively, heating the AgI-MOR in inert atmosphere instead of air allowed for densified GCM formation without I{sub 2} loss, and no necessity for the addition of Ag. The cause of this behavior is found to be related to the oxidation of the metallic Ag to Ag{sup +} when heated to above ~300{degrees}C in air. Heating rate, iodine loading levels and atmosphere are the important variables that determine AgI migration and results suggest that AgI may be completely incorporated into the mordenite structure by the 550{degrees}C sintering temperature.

More Details
Results 1–200 of 298
Results 1–200 of 298