Publications

Results 1–25 of 298
Skip to search filters

Evidence of decoupling of surface and bulk states in Dirac semimetal Cd3As2

Nanotechnology

Yu, W.; Rademacher, David R.; Valdez, Nichole R.; Rodriguez, Mark A.; Nenoff, T.M.; Pan, Wei P.

Dirac semimetals have attracted a great deal of current interests due to their potential applications in topological quantum computing, low-energy electronic devices, and single photon detection in the microwave frequency range. Herein are results from analyzing the low magnetic (B) field weak-antilocalization behaviors in a Dirac semimetal Cd3As2 thin flake device. At high temperatures, the phase coherence length lφ first increases with decreasing temperature (T) and follows a power law dependence of lφ ∝ T-0.4. Below ~3 K, lφ tends to saturate to a value of~180 nm. Another fitting parameter α, which is associated with independent transport channels, displays a logarithmic temperature dependence for T>3 K, but also tends to saturate below~3 K. The saturation value,~1.45, is very close to 1.5, indicating three independent electron transport channels, which we interpret as due to decoupling of both the top and bottom surfaces as well as the bulk. This result, to our knowledge, provides first evidence that the surfaces and bulk states can become decoupled in electronic transport in Dirac semimetal Cd3As2.

More Details

Single Photon Detection with On-Chip Number Resolving Capability

Chatterjee, Eric N.; Davids, Paul D.; Nenoff, T.M.; Pan, Wei P.; Rademacher, David R.; Soh, Daniel B.

Single photon detection (SPD) plays an important role in many forefront areas of fundamental science and advanced engineering applications. In recent years, rapid developments in superconducting quantum computation, quantum key distribution, and quantum sensing call for SPD in the microwave frequency range. We have explored in this LDRD project a new approach to SPD in an effort to provide deterministic photon-number-resolving capability by using topological Josephson junction structures. In this SAND report, we will present results from our experimental studies of microwave response and theoretical simulations of microwave photon number resolving detector in topological Dirac semimetal Cd3As2. These results are promising for SPD at the microwave frequencies using topological quantum materials.

More Details

Carbon Capture in Novel Porous Liquids

Rimsza, Jessica R.; Nenoff, T.M.; Christian, Matthew S.; Hurlock, Matthew H.

Direct air capture (DAC) of CO2 is one of the negative emission technologies under development to limit the impacts of climate change. The dilute concentration of CO2 in the atmosphere (~400 ppm) requires new materials for carbon capture with increased CO2 selectivity that is not met with current materials. Porous liquids (PLs) are an emerging material that consist of a combination of solvents and porous hosts creating a liquid with permanent porosity. PLs have demonstrated excellent CO2 selectivity, but the features that control how and why PLs selectively capture CO2 is unknown. To elucidate these mechanisms, density functional theory (DFT) simulations were used to investigate two different PLs. The first is a ZIF-8 porous host in a water/glycol/2-methylimidazole solvent. The second is the CC13 porous organic cage with multiple bulky solvents. DFT simulations identified that in both systems, CO2 preferentially bound in the pore window rather than in the internal pore space, identifying that the solvent-porous host interface controls the CO2 selectivity. Additionally, SNL synthesized ZIF-8 based PL compositions. Evaluation of the long-term stability of the PL identified no change in the ZIF-8 crystallinity after multiple agitation cycles, identifying its potential for use in carbon capture systems. Through this project, SNL has developed a fundamental understanding of solvent-host interactions, as well as how and where CO2 binds in PLs. Through these results, future efforts will focus not on how CO2 behaves inside the pore, but on the porous host-solvent interface as the driving force for PL stability and CO2 selectivity.

More Details

Dramatic Enhancement of Rare-Earth Metal–Organic Framework Stability Via Metal Cluster Fluorination

JACS Au

Christian, Matthew S.; Fritzsching, Keith F.; Harvey, Jacob H.; Sava Gallis, Dorina F.; Nenoff, T.M.; Rimsza, Jessica R.

Rare-earth polynuclear metal–organic frameworks (RE-MOFs) have demonstrated high durability for caustic acid gas adsorption and separation based on gas adsorption to the metal clusters. The metal clusters in the RE-MOFs traditionally contain RE metals bound by μ3–OH groups connected via organic linkers. Recent studies have suggested that these hydroxyl groups could be replaced by fluorine atoms during synthesis that includes a fluorine-containing modulator. Here, a combined modeling and experimental study was undertaken to elucidate the role of metal cluster fluorination on the thermodynamic stability, structure, and gas adsorption properties of RE-MOFs. Through systematic density-functional theory calculations, fluorinated clusters were found to be thermodynamically more stable than hydroxylated clusters by up to 8–16 kJ/mol per atom for 100% fluorination. The extent of fluorination in the metal clusters was validated through a 19F NMR characterization of 2,5-dihydroxyterepthalic acid (Y-DOBDC) MOF synthesized with a fluorine-containing modulator. 19F magic-angle spinning NMR identified two primary peaks in the isotropic chemical shift (δiso) spectra located at -64.2 and -69.6 ppm, matching calculated 19F NMR δiso peaks at -63.0 and -70.0 ppm for fluorinated systems. Calculations also indicate that fluorination of the Y-DOBDC MOF had negligible effects on the acid gas (SO2, NO2, H2O) binding energies, which decreased by only ~4 kJ/mol for the 100% fluorinated structure relative to the hydroxylated structure. Additionally, fluorination did not change the relative gas binding strengths (SO2 > H2O > NO2). Therefore, for the first time the presence of fluorine in the metal clusters was found to significantly stabilize RE-MOFs without changing their acid-gas adsorption properties.

More Details

Crystal Prediction and Design of Tunable Light Emission in BTB-Based Metal-Organic Frameworks

Advanced Optical Materials

Rimsza, Jessica R.; Henkelis, Susan E.; Rohwer, Lauren E.; Sava Gallis, Dorina F.; Nenoff, T.M.

Metal-organic frameworks (MOFs) have recently been shown to exhibit unique mechanisms of luminescence based on charge transfer between structural units in the framework. These MOFs have the potential to be structural tuned for targeted emission with little or no metal participation. A computationally led, material design and synthesis methodology is presented here that elucidates the mechanisms of light emission in interpenetrated structures comprised of metal centers (M = In, Ga, InGa, InEu) and BTB (1,3,5-Tris(4-carboxyphenyl)benzene) linkers, forming unique luminescent M-BTB MOF frameworks. Gas phase and periodic electronic structure calculations indicate that the intensity of the emission and the wavelength are overwhelmingly controlled by a combination of the number of interacting stacked linkers and their interatomic spacings, respectively. In the MOF, the ionic radii of the metal centers primarily control the expansion or shrinkage of the linker stacking distances. Experimentally, multiple M-BTB-based MOFs are synthesized and their photoluminescence was tested. Experiments validated the modeling by confirming that shifts in the crystal structure result in variations in light emission. Through this material design method, the mechanisms of tuning luminescence properties in interpenetrated M-BTB MOFs have been identified and applied to the design of MOFs with specific wavelength emission based on their structure.

More Details

Discovery of Complex Binding and Reaction Mechanisms from Ternary Gases in Rare Earth Metal–Organic Frameworks

Chemistry - A European Journal

Christian, Matthew S.; Nenoff, T.M.; Rimsza, Jessica R.

Understanding the selectivity of metal–organic frameworks (MOFs) to complex acid gas streams will enable their use in industrial applications. In this study, ab initio molecular dynamic simulations (AIMD) were used to simulate ternary gas mixtures (H2O-NO2-SO2) in rare earth 2,5-dihydroxyterephthalic acid (RE-DOBDC) MOFs. Stronger H2O gas-metal binding arose from thermal vibrations in the MOF sterically hindering access of SO2 and NO2 molecules to the metal sites. Gas-gas and gas-linker interactions within the MOF framework resulted in the formation of multiple secondary gas species including HONO, HNO2, NOSO, and HNO3⁻. Four gas adsorption sites were identified along with a new de-protonation reaction mechanism not observable through experiment. This study not only provides valuable information on competitive gas binding energies in the MOF, but it also provides important chemical insights into transient chemical reactions and mechanisms.

More Details

Electrodeposition of Complex High Entropy Oxides via Water Droplet Formation and Conversion to Crystalline Alloy Nanoparticles

Langmuir

Percival, Stephen P.; Lu, Ping L.; Lowry, Daniel R.; Nenoff, T.M.

A combination of electrodeposition and thermal reduction methods have been utilized for the synthesis of ligand-free FeNiCo alloy nanoparticles through a high-entropy oxide intermediate. These phases are of great interest to the electrocatalysis community, especially when formed by a sustainable chemistry method. This is successfully achieved by first forming a complex five element amorphous FeNiCoCrMn high-entropy oxide (HEO) phase via electrodeposition from a nanodroplet emulsion solution of the metal salt reactants. The amorphous oxide phase is then thermally treated and reduced at 570-600 °C to form the crystalline FeNiCo alloy with a separate CrMnOx cophase. The FeNiCo alloy is fully characterized by scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy elemental analysis and is identified as a face-centered cubic crystal with the lattice constant a = 3.52 Å. The unoptimized, ligand-free FeNiCo NPs activity toward the oxygen evolution reaction is evaluated in alkaline solution and found to have an ∼185 mV more cathodic onset potential than the Pt metal. Beyond being able to synthesize highly crystalline, ligand-free FeNiCo nanoparticles, the demonstrated and relatively simple two-step process is ideal for the synthesis of tailor-made nanoparticles where the desired composition is not easily achieved with classical solution-based chemistries.

More Details

Microwave response in a topological superconducting quantum interference device

Scientific Reports

Pan, Wei P.; Soh, Daniel B.; Yu, Wenlong; Davids, Paul D.; Nenoff, T.M.

Photon detection at microwave frequency is of great interest due to its application in quantum computation information science and technology. Herein are results from studying microwave response in a topological superconducting quantum interference device (SQUID) realized in Dirac semimetal Cd3As2. The temperature dependence and microwave power dependence of the SQUID junction resistance are studied, from which we obtain an effective temperature at each microwave power level. It is observed the effective temperature increases with the microwave power. This observation of large microwave response may pave the way for single photon detection at the microwave frequency in topological quantum materials.

More Details

Influence of Al location on formation of silver clusters in mordenite

Microporous and Mesoporous Materials

Rimsza, Jessica R.; Chapman, Karena W.; Nenoff, T.M.

Formation of zeolite supported Ag0 clusters depends on a combination of thermodynamically stable atomic configurations, charge balance considerations, and mobility of species on the surface and within pores. Periodic density functional theory (DFT) calculations were performed to evaluate how the location of Al in the mordenite (MOR) framework and humidity control Ag0 nanocluster formation. Four Al framework sites were studied (T1-T4) and the Al positions in the framework were identified by the shifts in the differential Al⋯Al pair distribution function (PDF). Furthermore, structural information about the Ag0 nanoclusters, such as dangling bonds, can be identified by Ag⋯Ag PDF data. For Ag0 formation in vacuum MOR structures with a Si:Al ratio of 5:1 with Al in the T1 position resulted in the most framework flexibility and the lowest Ag0 nanocluster charge, indicating the best result for formation of charge neutral nanoclusters. When water is present, Al in the T3 and T4 positions results in the formation of the smallest average Ag0 nanoclusters plus greater expansion of the O-T-O bond angle than in vacuum, indicating easier diffusion of the Ag0 nanoclusters to the surface. The presence of Al in 4-membered rings and in pairs indicates favorable MOR structures for formation of single Ag atoms, despite the existence of synthesis challenges. Therefore, Al in the T2 position is the least favorable for Ag0 nanocluster formation in both vacuum and in the presence of water. Al in the T1, T3, and T4 positions provides beneficial effects through framework flexibility and changes in nanocluster size or charge that can be leveraged for design of zeolites for formation of metallic nanoclusters.

More Details

Mechanistic Source Term Considerations for Advanced Non-LWRs (Revision 1)

Clark, Andrew C.; Higgins, Michael H.; Leonard, Elliott J.; Leute, Jennifer E.; Luxat, David L.; Nenoff, T.M.

This report is a functional review of the radionuclide containment strategies of fluoride-salt-cooled high temperature reactor (FHR), molten salt reactor (MSR) and high temperature gas reactor (HTGR) systems. This analysis serves as a starting point for further, more in-depth analyses geared towards identifying phenomenological gaps that still exist, hindering the creation of a mechanistic source term for these reactor types. As background information to this review, an overview of how a mechanistic source term is created and used for consequence assessment necessary for licensing is provided. How a mechanistic source term is used within the Licensing Modernization Project (LMP) is also provided. Lastly, the characteristics of non-LWR mechanistic source terms are examined. This report does not assess the viability of any software system for use with advanced reactor designs, but instead covers system function requirements. Future work within the Nuclear Energy Advanced Modeling and Simulations (NEAMS) program will address such gaps. This document is an update of SAND 2020-6730. An additional chapter is included as well as edits to original content.

More Details

Structure-property and thermodynamic relationships in rare earth (Y, Eu, Pr) iridate pyrochlores

Journal of Solid State Chemistry

Nenoff, T.M.; Rademacher, David X.; Rodriguez, Mark A.; Garino, Terry J.; Subramani, Tamilarasan; Navrotsky, Alexandra

This study relates structure, properties and thermodynamics, through synthesis, characterization and heat of formation measurements of rare earth iridate pyrochlore (RE2Ir2O7; RE ​= ​Y, Eu, Pr) crystalline powders. The RE2Ir2O7 phases are synthesized by high temperature solid-state synthesis methods. X-ray diffraction and elemental analysis techniques are utilized to validate the synthesis and enable structural comparisons. Trends in the bond angles indicate deviations from the Y and Eu analogs for the Pr2Ir2O7 phase. High temperature oxide melt solution calorimetry is used to determine the heats of formation of each phase. Breaking the trend expected across the rare earth series, the enthalpy of formation for Pr2Ir2O7 is more exothermic than the anticipated from the Y and Eu analogs.

More Details

Prediction of Reactive Nitrous Acid Formation in Rare-Earth MOFs via ab initio Molecular Dynamics

Angewandte Chemie - International Edition

Vogel, Dayton J.; Rimsza, Jessica R.; Nenoff, T.M.

Reactive gas formation in pores of metal–organic frameworks (MOFs) is a known mechanism of framework destruction; understanding those mechanisms for future durability design is key to next generation adsorbents. Herein, an extensive set of ab initio molecular dynamics (AIMD) simulations are used for the first time to predict competitive adsorption of mixed acid gases (NO2 and H2O) and the in-pore reaction mechanisms for a series of rare earth (RE)-DOBDC MOFs. Spontaneous formation of nitrous acid (HONO) is identified as a result of deprotonation of the MOF organic linker, DOBDC. The unique DOBDC coordination to the metal clusters allows for proton transfer from the linker to the NO2 without the presence of H2O and may be a factor in DOBDC MOF durability. This is a previously unreported mechanisms of HONO formation in MOFs. With the presented methodology, prediction of future gas interactions in new nanoporous materials can be achieved.

More Details

Continuous mof membrane-based sensors via functionalization of interdigitated electrodes

Membranes

Henkelis, Susan E.; Percival, Stephen P.; Small, Leo J.; Rademacher, David R.; Nenoff, T.M.

Three M-MOF-74 (M = Co, Mg, Ni) metal-organic framework (MOF) thin film membranes have been synthesized through a sensor functionalization method for the direct electrical detection of NO2. The two-step surface functionalization procedure on the glass/Pt interdigitated electrodes resulted in a terminal carboxylate group, with both steps confirmed through infrared spectroscopic analysis. This surface functionalization allowed the MOF materials to grow largely in a uniform manner over the surface of the electrode forming a thin film membrane over the Pt sensing elec-trodes. The growth of each membrane was confirmed through scanning electron microscopy (SEM) and X-ray diffraction analysis. The Ni and Mg MOFs grew as a continuous but non-defect free membrane with overlapping polycrystallites across the glass surface, whereas the Co-MOF-74 grew dis-continuously. To demonstrate the use of these MOF membranes as an NO2 gas sensor, Ni-MOF-74 was chosen as it was consistently fabricated as the best thin and homogenous membrane, as confirmed by SEM. The membrane was exposed to 5 ppm NO2 and the impedance magnitude was observed to decrease 123× in 4 h, with a larger change in impedance and a faster response than the bulk material. Importantly, the use of these membranes as a sensor for NO2 does not require them to be defect-free, but solely continuous and overlapping growth.

More Details
Results 1–25 of 298
Results 1–25 of 298