Publications

Results 1–25 of 92
Skip to search filters

DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES

Rigali, Mark J.; Miller, James E.; Altman, Susan J.; Biedermann, Laura B.; Brady, Patrick V.; Kuzio, Stephanie P.; Nenoff, T.M.; Rempe, Susan R.

Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

More Details

Interplay between microorganisms and geochemistry in geological carbon storage

International Journal of Greenhouse Gas Control

Kirk, Matthew F.; Altman, Susan J.; Santillan, Eugenio F.; Bennett, Philip C.

Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO2 conditions and identify factors that may influence survival of cells to CO2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure to acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. We conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.

More Details

Designing a biocidal reverse osmosis membrane coating: Synthesis and biofouling properties

Desalination

Hibbs, Michael R.; McGrath, Lucas K.; Kang, Seoktae; Adout, Atar; Altman, Susan J.; Elimelech, Menachem; Cornelius, Chris J.

A biocidal coating was developed in order to reduce biofouling on a reverse osmosis (RO) membrane using a quaternary ammonium (QA) functionalized polymer. The synthesis of a series of polysulfone (PS) ionomers with QA groups is described, and a method for spraying these QA ionomers as an alcoholic solution, which dried into water insoluble coatings. Contact angle and streaming potential were used to analyze the coating's hydrophilicity and surface charge. Both PS-QA1 and the commercial RO membrane had an apparent contact angle of 68° that increased to 126° for PS-QA12 corresponding to alkyl chain length. A negatively charged particle-probe was used to measure coated and uncoated RO membrane interaction forces. Measured interaction forces correlated strongly with the length of alkyl chains or hydrophobicity of the coated surfaces. Uncoated RO membranes and ones coated with PS-QA were exposed to suspensions of Escherichia coli cells. All four PS-QA coatings showed significant biotoxicity and killed 100% of the E. coli cells, but uncoated RO membranes had metabolically active biofilms. However, coatings tested in a RO crossflow system showed a flux reduction that is attributed to mass transfer resistance due to excessively thick films.

More Details
Results 1–25 of 92
Results 1–25 of 92